
Wi-Fi for EPOSMote III with the ESP8266 Module

This page is a step-by-step guide for uploading the firmware of the ESP module. The factory firmware could
be used, but it can not handle secure connections properly. The solution is to create a custom firmware
capable of handling secure connections and provide a UFSC self-signed certificate to the server.

Our goal on this page is to establish a secure connection between EPOSMote3 (eMote) and the IoT Server.
To achieve this, a micro-controller will be used as an interface between the eMote and the network.

This microcontroller is an ESP2866, in which this firmware looks forward to bridge EPOSMote III apps with
LISHA IoT Platform. The firmware supports HTTPS, certificate-based authentication, and EDUROAM
connection.

Hardware Requirements
ESP2866
An ESP2866 module is required, there are many module versions for this chip and the one used in this
article is the ESP-01. Use the Hardware module versions as a reference. Version 12 of the ESP module has
SPI communication pins, but due to its pin size, this version couldn't be tested.

Pinout

https://github.com/esp8266/esp8266-wiki/wiki/Hardware_versions

FTDI
To write data into the ESP, an FTDI board is required.

And the connections between the ESP and the FTDI are shown in the next sections.

Pinout for flashing Flash the ESP
It is important to note that when you are uploading the certificate files or the firmware, the
GPIO0 pin on the module must be connected to GROUND. And when the code is ready for
production, GPIO0 must be disconnected from the GROUND

FTDI connecting the computer and the ESP. ESP PIN configuration (FLASH boot mode):

FTDI ESP8266

TX RX

RX TX

GROUND GROUND and GPIO 0

VCC VCC and RESET and CH_EN

Pinout in RUN Mode (for testing the module with the computer)
To boot ESP8266 in RUN Mode, use the same configuration and disconnect GROUND from GPIO 0

eMote III

EPOSMote III pinout:

Connecting ESP and eMote
The ESP and the eMote3 communicate through UART, using the Rx-Tx pins available on each board. Make
sure you have the following connections ready:

Pin Connection

ESP's RX pin connected to eMote's C4 pin (UART1 TX)1.
ESP's TX pin connected to eMote's C3 pin (UART1 RX)2.
ESP's CH and Vin connected to external 3v3 source (ESP module requires over 100mA to run and3.
eMote can't provide that)
ESP's GND connected to eMote's GND pin and the external source's GND4.

EPOS Documentation
Users are encouraged to take a look at the complete documentation for EPOS and EPOS Mote3:

Complete documentation for EPOS 2.2
EPOSMote III Quick Start
EPOSMote III User Guide
Embedded Systems Labs with EPOS and EPOSMote
EPOSMoteIII usage documentation
EPOSMoteIII hardware documentation

For further assistance, please check EPOS Project at LISHA's GitLab.

Software Requirements
The firmware code was meant to be flashed into an ESP2866 through Arduino IDE.
For the firmware code to be supported by the Arduino IDE, the ESP2866 library is needed.

Arduino IDE Recommended Configuration
Arduino IDE version used: 1.8.11
Tools Menu:

https://epos.lisha.ufsc.br/EPOS+2+User+Guide
https://epos.lisha.ufsc.br/EPOSMoteIII+Quick-Start
https://epos.lisha.ufsc.br/EPOSMoteIII+User+Guide
https://epos.lisha.ufsc.br/Embedded+Systems+Labs+with+EPOS+and+EPOSMote
https://epos.lisha.ufsc.br/IoT+with+EPOS
https://epos.lisha.ufsc.br/EPOSMote+III
https://gitlab.lisha.ufsc.br/epos/epos
https://software.intel.com/en-us/get-started-arduino-install
https://github.com/esp8266/Arduino

Board: "Generic ESP8266 Module"
Upload Speed: "115200"
CPU Frequency: "160 MHz"
Crystal Frequency: "26 MHz"
Flash Size: "512K (no SPIFFS)"
Flash Mode: "DOUT (compatible)"
Flash Frequency: "40MHz"
Reset Method: "ck"
Debug Port: "Disabled"
Debug Level: "None"
lwIP Variant: "v2 Lower Memory"
VTables: "Flash"
Exceptions: "Disabled"
Builtin Led: "2"
Erase Flash: "Only Sketch"
SSL Support: "All SSL ciphers(most compatible)"
Programmer: "AVRISP mkII"

ESP's Firmware Source Code
The source code for the ESP8266 Wifi Firmware for the EPOSMote III can be found in:

LISHA's GitLab.

This source code for the firmware is defined in a “.ino” file. The main components of the firmware are the
following:

“Configuration Section”: here you must define the Wifi credentials that the ESP will connect to and
also the server to which the application desires to send the messages. Moreover, it is in this section
that the certificates must be copied from the content of the .pem and .key files;
“setup()”: establish the wifi connection;
“connect_client()”: Create/restart server connection “CONNECTION_TRIES_LIMIT” times;
“post()”: Sends the contents of the parsing buffer to the server;
“parse_post()”: Parse the SmartData string coming from the serial;
“loop()”: Arduino's main function. Keeps reading the serial until the beginning of a SmartData String
is identified coming from the serial;

Step-by-Step Source Code Configuration:
1. Look for the "Configuration Section" inside the source code (esp_wifi_firmware.ino)
2. Modify the variables in this section as needed:
2.1. "DEBUG(x) x": Enable Debug messages, remove "x" to disable Debug messages;
2.2. IF WPA2 wifi conection is needed, set WPA2 to 1 and
2.2.1. Finish the WPA2 configuration setting the login info (ssid, password, user, pass);
2.3. IF WPA2 wifi will not be used, set WPA2 to 0 and
2.3.1 Finish the Wifi configuration setting the login info (ssid and password of wifi NOT WPA2);
2.4. Set the HTTP configuration (host address, host port, api_attach and api_put):
2.4.1. API Attach is deprecated, configure this address to API Create;

https://gitlab.lisha.ufsc.br/iot/emote3-wifi
https://epos.lisha.ufsc.br/IoT+Platform#Series_Creation

2.4.2. Configure the acceptable retries to host connection (0 if unlimited);
2.4.3. Configure the time out for a HTTP response from host (0 if ignored);
2.4.4. IF a certificate will be used to validate the connection with the server, set SSL_VERIFICATION to 1,
else 0, and
2.4.4.1. Fill the client_cert and private_key information to fully configure SSL certificate verification;
2.4.5. IF certificates are NOT being used and a Default credential will be used for every post set DEFAULT
Credentials to 1 and configure client_credentials_json accordingly;

Sending Data and Parsing
Interactions by DEFAULT are done as follows:

API_PUT:
"++post(\"your smartdata here\")\0x255\0x255";

API_CREATE (__API ATTACH is deprecated, change from API_ATTACH to API_CREATE):
"--post("your series here")\0x255\0x255";

Note that the — and ++ and \0x255\0x255 control characters are used during the parsing algorithm to
control the state machine for serial readings. Nevertheless, they can be modified as needed by changing
the variables PUT_CONTROL_CHAR, ATTACH_CONTROL_CHAR, and END_CONTROL_CHAR. Also the
methods loop() and parse_post() are the ones that configure the serial parsing state machine and can be
modified as aswell to attain the application needs.

Old Versions of the firmware (Deprecated)
Note: read this article on MicroPython for the ESP8266 before continuing!

Installation and Setup
Software Requirements

The following list shows what you need to install/setup/prepare:

Install the Arduino IDE. The version used here is v1.8.31.
Install the ESP8266 library on your system. The tutorial can be found at2.
https://github.com/esp8266/Arduino . The version used for this tutorial is v2.2.0
You need to emit a P1 certificate to ensure your identity, the server uses this certificate to verify if3.
you are part of the university. This can be done at https://p1.icpedu.rnp.br/default/public/default . The
certificate will be saved in your browser, and it should be exported to a folder on your computer.
To upload the certificate to the ESP's flash memory, you need a plugin into your Arduino IDE.4.
Installation and Usage can be found at https://github.com/esp8266/arduino-esp8266fs-plugin. Link for
the ESP File System plugin: ESP8266FS-0.3.0.zip

Hardware Requirements

A ESP module is required, there are many module versions for this chip and the one used on this article is
the ESP-01. Use this link as reference https://github.com/esp8266/esp8266-wiki/wiki/Hardware_versions for
module versions. The version 12 of the ESP module has SPI communication pins, but due to its pin size, this
version couldn't be tested.

https://docs.micropython.org/en/latest/esp8266/esp8266/tutorial/intro.html
https://github.com/esp8266/Arduino
https://p1.icpedu.rnp.br/default/public/default
https://github.com/esp8266/arduino-esp8266fs-plugin.
https://epos.lisha.ufsc.br/tiki-download_file.php?fileId=228
https://github.com/esp8266/esp8266-wiki/wiki/Hardware_versions

It is important to note that when you are uploading the certificate files or the firmware, the
GPIO0 pin on the module must be connected to GROUND. And when the code is ready for
production, GPIO0 must be disconnected from the GROUND

To write data into the ESP, a FTDI board is required. And the connections between the ESP and the FTDI are
shown below.

Preparing the ESP

Make sure the GPIO0 of the module is connected to ground before you start the procedures.

Adding the certificate
As explained before, the certificate must be exported into your computer. Assuming this step is done and
you have a certificate.p12 file ready, you need to break this file into a key and a certificate using openssl.
Go to the folder where the certificate is, and type the following:

openssl pkcs12 -in certificate.p12 -nocerts -out key.pem -nodes1.
openssl rsa -outform der -in key.pem -out key.der2.
openssl pkcs12 -in certificate.p12 -nokeys -out cert.pem -nodes3.
openssl x509 -outform der -in cert.pem -out cert.der4.

This creates 2 new files that are going to be added into the ESP (cert.der and key.der). Copy those files
inside your sketch/data directory and upload it to the ESP, as explained on the item 3 in Software
Requirements section.

If you are successful, the certificates are written inside the ESP's flash memory.

Uploading the Firmware
Get the new firmware and add it to your sketch. Uploading the code is the same as it is for any Arduino
board.

Current firmware version is 0.4: ESP-LishaFirmware_secure-v0.4
Older Version: ESP-LishaFirmware_secure-v0.3

The default Wifi network on the firmware is:
Name: LishaJoinville
Pass: 12345678

Before connecting the ESP module with EPOSMote module
Using the Arduino Serial IDE to test if your setup was done correctly. Put the commands and check if the

https://epos.lisha.ufsc.br/dl227?display
https://epos.lisha.ufsc.br/tiki-download_file.php?fileId=453
https://epos.lisha.ufsc.br/tiki-download_file.php?fileId=366

response is expected.

The following image shows an example of use of the AT+SENDTSTP command to
iot.lisha.ufsc.br/api/put.php. You can see that the server response is what we were expecting.

Available Commands and Responses
It is important to note that when the ESP module is powered on, it connects to the default network
(redeUFSCSemFio), and all the commands need to contain "\r" as the last character. The following table
shows the available commands and responses.

For the latest firmware version (v0.4), the ESP's use is simplified. Instead of sending raw
commands through UART, just import <esp8266.h> and use the class ESP8266.

Command Description Response Example

AT+SYSTEMCHECK Gets the
status of the
ESP Module

CONNECTION=(OK/FAIL)&FILESYSTEM=(OK/FAIL) eMote: AT+SYSTEMCHECK\r -> ESP:
CONNECTION=FAIL&FILESYSTEM=OK\r

AT+SYSTEMREADY Checks if the
module is
ready

OK/FAIL eMote: AT+SYSTEMREADY\r -> ESP:
OK\r

AT+RESPONSETIME Gets the
response
time of the
last request

OK=(integer in ms) eMote: AT+RESPONSETIME\r -> ESP:
OK=25\r

AT+GETHOST Gets the host
of the
connection.
Default is
iot.ufsc.br

OK=(host name) eMote: AT+GETHOST\r -> ESP:
OK=iot.ufsc.br\r

AT+GETROUTE Gets the
route
reached by
the
connection.
Default is
/api/put.php

OK=(route) eMote: AT+GETROUTE\r -> ESP:
OK=/api/put.php\r

AT+GETPORT Gets the port
used on the
connection.
Default is
443.

OK=(port) eMote: AT+GETPORT\r -> ESP:
OK=443\r

AT+SETHOST Sets the host
of the
connection

OK eMote:
AT+SETHOST=www.google.com\r ->
ESP: OK\r

AT+SETROUTE Sets the
route of the
connection

OK eMote:
AT+SETROUTE=/api/get_data.php\r ->
ESP: OK\r

AT+SETPORT Sets the port
used for the
connection

OK eMote: AT+SETPORT=80\r -> ESP:
OK\r

https://epos.lisha.ufsc.br/dl365?display

AT+SETSSID Sets the
default wifi
network
name.
Default is
RedeWifi,
pass:
12345678.

OK eMote: AT+SETSSID=eduroam\r ->
ESP: OK\r

AT+SETPASSWORD Sets the
default wifi
password

OK eMote:
AT+SETPASSWORD=12345678\r ->
ESP: OK\r

AT+CONNECTWIFI Connects to
the chosen
network

OK eMote: AT+CONNECTWIFI\r -> ESP:
OK\r

AT+GETTIMESTAMP Gets the
actual
timestamp
from network

(timestamp) eMote: AT+GETTIMESTAMP\r -> ESP:
(unix timestamp)\r

AT+GETHEAPSIZE Gets the esp
heap size in
bytes

(heap size in bytes) eMote: AT+GETHEAPSIZE\r -> ESP:
(heap size in bytes)\r

AT+SENDTSTP Sends data
over the
selected
route to the
selected
host. It is
used to
authenticate
the user.

if content size is less than 82 bytes, response is:
ERR=INVALIDCONTENT. If content is valid,
response will be the same as the server
response

eMote: AT+AUTH=(82 bytes string)\r
-> ESP: OK=DENIED\r

AT+SEND!32 Sends data
over the
selected
route to the
selected
host. The
number is
used to
define the
message size
in bytes. The
response will
be the server
http
response

(HTTP RESPONSE) eMote: AT+SEND!4=1234\r -> ESP:
OK=HTTP/1.1 400 Bad Request\r

Example
The following example shows how to declare the UART inside EPOS and send commands to the ESP module.

This example works with the version 0.4 of the ESP firmware.

EPOS UART Example

#include <utility/ostream.h>
#include <utility/string.h>

#include <alarm.h>
#include <uart.h>
#include <machine/cortex/esp8266.h>
#include <riffs.h>

using namespace EPOS;
OStream cout;

class Data_Record
{
public:
 Data_Record() {
 for(int i = 0; i < 84; i++)
 a[i] = 0;
 }

 char a[84];
};

int main()
{
 Delay(2000000);

 UART uart(1, 115200, 8, 0, 1);
 GPIO rst('B', 3, GPIO::OUT);

 char host[] = "iot.lisha.ufsc.br";
 char route[] = "/api/put_hydro.php";

 cout << "ESP Com TEST" << endl;

 ESP8266 esp(&uart, &rst);
 cout << "ESP8266 created" << endl;

 esp.command_mode();

 esp.config_endpoint(443, host, sizeof(host) - 1, route, sizeof(route) - 1);
 cout << "End point configured" << endl;

 esp.connect("LishaJoinville", 14, "12345678", 8);
 Data_Record aux;
 char res[255];

 cout << endl << "Posting..." << endl;
 int res_size = esp.post(&aux, sizeof(aux), res);

 res[res_size - 1] = '\0';

 cout << "Res size: " << res_size << endl;
 cout << "Response: " << res << endl;

 while(1){
 }

 return 0;
}

Troubleshooting guide

If problems are found, here are some things you can double check to make sure everything is setup
correctly.

Make sure the ESP is powered with 3.3V and the source supply can provide at least 200mA.1.
The firmware default wifi network is LishaJoinville (pass: 12345678). Make sure this network exists, or2.
change this setting on the firmware.
Make sure the traits file of your application is setup correctly according to the example above.3.
Are the components of your EPOS branch working as expected? A reliable UART is needed to transfer4.
data between the EPOSMote and the ESP
Is the ESP's GPIO-0 disconnected? If you power the ESP with GPIO-0 connected to ground, the module5.
will boot on the flashing mode and the firmware won't run. Make sure GPIO-0 is not connected to
anything
Double check the connections between the ESP and the eMote. So many wires can get us confused6.
sometimes. ESP's RX on eMote's TX and ESP's TX on eMote's RX.
Certificates load should be done inside the setup method, connection might fail if the certificates are7.
loaded during execution time.
Due to a wrong implementation of an internal TLS library, there was a memory leak causing the ESP8.
to crash and restart. If you face some reset issues, make sure you are using the same version
described in this tutorial.

	Wi-Fi for EPOSMote III with the ESP8266 Module
	Hardware Requirements
	ESP2866
	FTDI
	Pinout for ﬂashing Flash the ESP
	Pinout in RUN Mode (for testing the module with the computer)

	eMote III
	Connecting ESP and eMote
	EPOS Documentation

	Software Requirements
	Arduino IDE Recommended Conﬁguration
	ESP's Firmware Source Code
	Step-by-Step Source Code Conﬁguration:
	Sending Data and Parsing

	Old Versions of the ﬁrmware (Deprecated)
	Installation and Setup
	[Software Requirements]
	Software Requirements
	Hardware Requirements

	Preparing the ESP
	Adding the certiﬁcate
	Uploading the Firmware
	Before connecting the ESP module with EPOSMote module
	Available Commands and Responses
	Example

	Troubleshooting guide

