loT with EPOS Tutorial

Table of contents

e |oT with EPOS Tutorial
e EPOS Hands-On
e Guided Tutorial
o Task 1 - My first SmartData with a local transducer
o Task 2 - Observer attached to SmartData
o Task 3 - Sending SmartData to the UFSC loT platform.
o Task 4 - Advertised SmartData
o Task 5 - Commanded SmartData

EPOS Hands-On

For the first contact with EPOS you can follow a step-by-step guide in EPOSMotelll Quick-Start. If you are
attending an on-site training, please, make sure you read this guide in advance in order to prepare the
requirements. Bring to the class at least a Linux notebook with the GCC Toolchain for ARM installed and the
SVN EPOS 2 for ARM code downloaded.

Guided Tutorial

The next sections will guide you to program an EPOSMotelll for loT solutions with SmartData and the UFSC's
loT platform, step-by-step. The guide is subdivided in tasks, each one explaining a feature of EPOS 2
important for interacting with the loT infrastructure. The tasks are in the branch arm directory
app/tutorial. As explained in Running EPOS on EPOSMotelll the command make APPLICATION=hello
flash tries to compile and write the application app/hello.cc with traits file app/hello traits.h in the
EPOSMotelll via Serial/USB. We do not need to change traits files from the tasks in this tutorial, unless the
instructor says otherwise. First of all, you can make a symbolic link from these two directories in the
directory app with the following commands to

enable the makefile to find them.

cd app
ln -s tutorial/* .

The SmartData abstraction used in EPOS 2 embeds the location of produced data that can be achieved
automatically using trilateration and radio strength information. However, for simplicity of this tutorial, the
instructors could ask you to compile EPOSMotelll tutorial applications with fixed coordinates with the
following commands replacing the values with the coordinates given by the instructors.

For tasks 1, 2 and 3 (for a standalone node, out of a Wireless Sensor Network):

make GXYZ="(0,1,2)" APPLICATION=app name flash

For tasks 4 and 5 (for a network node, responding to a sink):

make XYZ="(0,1,2)" APPLICATION=app name flash


#Task_3_-_Sending_SmartData_to_the_UFSC_IoT_platform.
https://epos.lisha.ufsc.br/EPOSMoteIII+Quick-Start
https://epos.lisha.ufsc.br/IoT+with+EPOS#Running_EPOS_on_EPOSMote_III

Task 1 - My first SmartData with a local transducer

Here we show you how to interact with a sensor/actuator hardware with a SmartData using a Transducer
abstraction in a standalone application. Your should complete the program taksl transducer.cc. A
transducer must define a method sense (for sensors) and a method actuate (actuators). This program has
an example of a Transducer for a I2C thermometer Mediator, so you should complete to read the data from
it. You could use get mediator method to read and assign the value to the SmartData.

data-> value = sensor.get();

You should also instantiate the SmartData passing as constructor arguments the numeric identifier of the
device, the expiry time for the produced data and the mode. Note that the code uses a typedef to create a
type that instantiate a SmartData with the temperature transducer created (My Temperature). In this task
we are going to create a local SmartData that is PRIVATE, which means that the data is not advertised in
the network and that it does not receive commands from other nodes. This instantiation is exemplified
below using the device number 0 and an expiry time of 15s.

My Temperature t(0, 15000000, My Temperature::PRIVATE);

You are also encouraged to use the operator Value(), and the time() and location() methods in the
while loop, to print meta information of the SmartData.

Compile the code, program EPOSMotelll and open the serial (with minicom or other tool) to see the output.

Task 2 - Observer attached to SmartData

Now we show how to create an Observer able to handle notifies from SmartData. The class Printer is an
Observer that implements the method update which is called every time the observed SmartData triggers
a notify (SmartData is an Observed). This notify is triggered every time the value of SmartData is updated
so you do not need a while loop as in the previous task.

The program task2 attach.cc needs to be completed with the period (in microseconds) of the local
SmartData for the transducer. This period indicates the frequency (1/period) that data will be read from the
hardware. Complete it with a period of 5s. You should also complete it to print the SmartData every update
as in the example below:

cout << "Temperature = " << (* data) << " at " << data->location() << ", " << data->time()
<< endl;

Compile the code, program EPOSMotelll and open the serial to see the output.

Task 3 - Sending SmartData to the UFSC loT platform.

Here we show how to integrate a standalone EPOSMotelll node to the loT platform with the help of a Linux
Gateway. This gateway can be any Linux device with USB interface and an Internet connection able to
execute Python scripts. For this tutorial, we suggest using the same computer that you are connecting to
the EPOSMotelll with minicom. You will need to program EPOSMotelll with the application
task3 iot platform.cc. This application prints SmartData with the Printer observer like the previous
application but now in a binary format to a USB port connected to the Linux gateway. The Linux gateway


https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Transducers
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Hardware_Mediators
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer

should execute the Python script tools/eposiotgw/eposiotgw that will read binary data received in the
USB, interpret and send it to the loT cloud. Execute task3 iot platform.cc in the EPOSMotelll, execute
eposiotgw with the following options and the parameters given by the instructor:

./eposiotgw -j -D <domain> -U <user> -P <password> -g

The option -g indicates debug mode, which means that the script will only print data received from the USB
port in the screen without sending it to the IoT cloud. After you are sure that the script is running properly
execute the same command line without -g.

The domain parameter indicates a Cassandra database domain where your data will be stored in the cloud.
The user and password indicates the credentials used to connect to the domain. The option -j tells the
script to send data to the cloud in JSON. You can execute ./eposiotgw --help to see other options from
this command.

At this point, the gateway should be sending data to the cloud using JSON with a REST API and you can
configure the Grafana dashboard panels from http://iot.lisha.ufsc.br/HomePage to visualize. Login with the
credentials given by the instructors and click on the dashboard specified by them. Click on the name of the
dashboard and after click in the option Edit. In this page, you should configure the credentials of the
dashboard to fetch data from the same domain you are sending SmartData. You should also configure the
Interest, that indicates which data will be shown in this dashboard. The Interest is an sphere with center
in the coordinates x, y, z and radius r, for an device identifier dev and with a Unit. You should assure that
the coordinates specified in your application SmartData is within the Interest sphere and using the same
unit.

When you finish this configuration you should be able to visualize data produced by your sensor being
forwarded by the Linux Gateway and presented in the Grafana dashboard.

Task 4 - Advertised SmartData

Here we are not using just standalone EPOSMotelll connected via USB to a Linux gateway. We are using
SmartData with a TSTP Wireless Sensor Network (WSN). Every EPOSMotelll is a node from this network
executing the application task4 advertise.cc. The instructors execute the sink of this network with the
application demo/demo_sink.cc.

You should complete the application task4 advertise.cc to enable it to advertise SmartData to the sink
as shown in the following code:

My Temperature t(0, 15000000, My Temperature::ADVERTISED);

The sink application demo_sink.cc has the same Printer observer from the previous application used to
send data to the Linux gateway via USB. Now the sink is responsible for this operation for all messages
advertised in the TSTP network.

Task 5 - Commanded SmartData

The last task is an example of commanded node. Here you should complete the application
task5 commanded.cc to enable the EPOSMotelll to receive commands from the sink to switch the LED on
and off remotely.


http://cassandra.apache.org/
https://epos.lisha.ufsc.br/IoT+with+EPOS#iot.lisha.ufsc.br_REST_API
https://grafana.com/
http://iot.lisha.ufsc.br/HomePage
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#TSTP

Smart Data<Switch Sensor> my led(0, 1000000, Smart Data<Switch Sensor>::COMMANDED) ;



	IoT with EPOS Tutorial
	[Table of contents]
	Table of contents


	EPOS Hands-On
	Guided Tutorial
	Task 1 - My ﬁrst SmartData with a local transducer
	Task 2 - Observer attached to SmartData
	Task 3 - Sending SmartData to the UFSC IoT platform.
	Task 4 - Advertised SmartData
	Task 5 - Commanded SmartData


