
Table of contents
1. Members:
2. Schedule:
3. About the project:
4. Model

4.1. Consumption monitoring
4.2. Water leaking detection

4.2.1. Fuzzy logic
4.2.2. Neural network

4.3. Nonfunctional model
4.3.1. Power source
4.3.2. Sensor Consumption
4.3.3. Sonar sensor
4.3.4. Solenoid valve
4.3.5. Leak detection
4.3.6. Sensor update time

4.4. Water reservatory monitoring
5. Architecture
6. Computer Model
7. Technologies and project overview:

7.1. Water Flow Sensor
7.2. Dynamo
7.3. Eletronic valve (Registro/válvula)
7.4. EPOSMote III
7.5. Sonar
7.6. Humidity sensor
7.7. 3v power source
7.8. 5v power source
7.9. 220v power source

1. Members:
Jonas Caetano
Pedro Henrique Pereira Martins
Quenio Cesar Machado dos Santos

2. Schedule:
Day Time Hours Room

Monday 13:30 2 INE 214

Wednesday 13:30 2 INE 214

3. About the project:
In our project we will try to automatize the hydraulic system of a building. To start, we will install in each
faucet sensors to measure the water flow and use this flow to power the sensors. With the results of the
measurement we can estimate the use

https://moodle.ufsc.br/user/view.php?id=28547&course=58069
https://moodle.ufsc.br/user/view.php?id=66992&course=58069
https://moodle.ufsc.br/user/view.php?id=116215&course=58069

4. Model

4.1. Consumption monitoring
The monitoring of the building water consumption will be realized with the use of water flow meters (one in
each tap), coupled to these water flow meters, there will be an Emote which will pass the data collected by
the sensor to a central repository.

4.2. Water leaking detection
To perform the leaks detection two approaches were used, fuzzy logic and neural networks.

4.2.1. Fuzzy logic
One of the approaches that we use was fuzzy logic, which generates results within a range, in this case,
generates a value between 0 and 1, this results in a degree of certainty the occurrence of leaks where 0 is
sure that is not occurring a leak and 1 is sure that is happening a leak.

For the use of fuzzy logic was extended the tool Ptolemy using a Java library for fuzzy logic representation
JFuzzy, this library allows the creation of fuzzy systems using a standardized language to generate the
predicates with their respective weights and margins of action that will be interpreted by the logic engine
library and will generate a result within the specified range. The specification of our problem using the
language adopted by JFuzzy was made as shown below:

After specifying the functioning of our fuzzy logic, we extended the tool to support the using of our
implementation, for this the following classes were created:

http://ptolemy.eecs.berkeley.edu/
http://jfuzzylogic.sourceforge.net/html/index.html

The results obtained with the use of fuzzy logic were not very satisfactory, the reason is that this kind of
approach requires a certain knowledge of the kind of problem that you want to solve and we have no leaks
specialist, then our specification of what is a leak was not very accurate.

4.2.2. Neural network

Besides the use of fuzzy logic, also chose using neural networks, this approach is simpler, the knowledge
that it takes on the problem domain is not defined by us, but by all of the collected data from the
environment, thus, It turns the output to be more precise depending on the size and accuracy of the data
collected.

The Neural networks workflow is simple, you collect a data set either with an input and the expected
output, trains the network with this data set and after training your network already will be able to classify
new samples of data, the result of rating will depend on the data set used to train the network and the
number of intermediate neurons that were used on the network.

To implement our neural network and perform the tests was used MATLAB. First, we create a script in
MATLAB that will load the simulation data in a matrix, after this it will separate the array into two (2), one
containing the training set, and another containing the set to be classified, after the network is trained and
the remaining data are classified, we did a comparison of the data classified by our network and the original
data to determine the network's hit percentage. The script created in MATLAB is shown below:

The idea of adopting neural networks in our solution is to continuously expand the set of samples for
training every time our network make a mistake. The sample that our network wrongly classified will be
compared with other samples contained in our training set using a simple similarity technique (a simple
multiplication, because both metrics have the same significance), if any sample in training set is similar
with the misclassification, then the value contained in this sample response will be updated with the value
contained in the sample misclassified, if not, the sample misclassified will be added to the set of samples
for training.

To create the training dataset, was done a simulation equivalent to one (1) working day of a building that
has 1 (one) central tank and 3 (three) water outlets, the simulation took into account the opening hours of
the building between 8:00am and 10:00pm, it was estimated that each person consumes an equivalent of 2
liters of water during they staying in the building but was not taken into account a flow rate limit for each
water outlet, it can be noticed a marked change in the building's water consumption during the simulation.
The graph above shows the water flow pattern over the day.

The spreadsheet with the dataset used to train the neural network can be found here

4.3. Nonfunctional model

Were detected 4 non-functional requirements for this project:

4.3.1. Power source
As illustrated in our model, the EPOS mote, sensors and valves need a source power, however in some
cases (in the water reservatory at the roof) where the humidity level and the temperature are high, the
source power needs to be resistant to humidity and high temperature.

4.3.2. Sensor Consumption
The water flow sensor needs to have a low power consumption because it will be auto sufficient in power
consumption, that means the sensor will be it own source of power.

4.3.3. Sonar sensor
The sonar sensor will be inside a water tank, it means that this sensor needs to be humidity resistant like it
source power.

4.3.4. Solenoid valve
The valve needs to support a common water pressure, we think that a default valve supports that but some
kinds of edifications have pressurizers that turn the water pressure high and some kinds of valves may get
problems with this high pressure. Another requirement about the valve is the lack of energy, the solenoid
valve needs to open when not energized and close when energized, its prevent the lack of water when the
energy is down at the same time that reduces the energy consumption because the valve will be more time
open than closed.

4.3.5. Leak detection
The response needs to have a deterministic processing time to other systems be able to have enough time
to work properly.

https://docs.google.com/spreadsheets/d/14bA-nQM1ikihaYW_YjgyONp0QZZMRf66SJ_314JWgh0/edit?usp=sharing

4.3.6. Sensor update time
Because wireless is used to communicate with the database, it could occur delays between each sensor
update. This can be a problem if systems reading the database don't check if the data was updated in the
same time.

4.4. Water reservatory monitoring

To obtain the water level in the reservatory, we will use two sonar sensors, one to estimate the distance
between the ceiling and the floor (H2) or the base that the water box is on and the other to estimate the
distance between the ceiling and a board floating on the water surface (H1)...

Be continued

5. Architecture

Datastore : This entity is the central point of the system. It stores all the data received from the
gateway, the result from the LeakDetector and, by also storing commands from the Configuration
Manager and the Controller, it works as a facade for the communication between other entities.

Gateway : Collects data from all sensors and sends to the Datastore.

Water Flow Sensors : This sensor, connected to an EPOS Mote, calculates the water flow rate at the
point where it is installed and sends this value to the Datastore via the Gateway. Combined with the
water flow rate, the sensor also sends its identification and the current time. This action is executed
periodically.

Tank Level Sensor : This sensor calculates the water level of the reservoir and sends this value to the
Datastore. Combined with the water level, the sensor also sends the current time. This action is
executed periodically.

Leak Detector : This entity reads a series of datas from the Datastore and, based on that, determine
whether or not a leak exists in the building. After having a conclusion, it sends this result back to the
Datastore. The data read from the Datastore includes the water flow rate obtained from each sensor,
the number of people in the building and the number of machines actively using water. Combined
with the result, the Leak Detector also sends a identification of where the leak is occurring and the
current time. This action is executed periodically.

Configuration Manager : This entity allows the users to provide the schedule of people presence and
machine activity at the building. Another responsibility is to receive instructions from the users and
register them at the Datastore for use of others entities.

Controller : This entity reads the Datastore and, based on user instructions and the results of the Leak
Detector, sends back to the Database commands to the Actuator. Combined with the command, the
Controller also sends the identification of the target Actuator and the current time.

Actuator : This Actuator reads the Datastore and if a command targeted to its identification exists, it
opens or closes the flow based on the instruction.

Dashboard : This entity reads the Datastore and provides to the user charts and tables with
information about the current state of the system.

6. Computer Model
Class WaterFlowSensor {

Var interruptionCount = 0;
Var url = "db.lisha.ufsc.br/persistData";
Var period = 30;
Var readResult = 0;
Var timeout = 10000;
Var sensor = 1;

@interruption GPI/O pin 5
Method void GPI/OinterruptionHandler(){
 interruptionCount ++;
}

@Atomic
Method void waterflowReader(){
 readResult = interruptionCount / period;
 interruptionCount = 0;
 resultPersists();
}

Method void resultPersists(){
 Var http = getHttpConection(url);
 http.setMethod("POST");
 Var date = timer.getData();
 Var JSON = "{type:waterflow, timestamp:date, readResult:readResult, sensor:sensor}";
 http.sendRequest(JSON,timeout);
 http.close();
}

Method void main(args[]){
 Var AlarmReader = new Alarm(period*1000,waterflowReader(),'infinite');
}

}

Class LeakDetector{

Var urlRetrieve = "db.lisha.ufsc.br/retrieve";
Var urlPersist = "db.lisha.ufsc.br/persist";
Var period = 30;
Var timeout = 10000;
Var lastResult = -1;
Var sensorsNumbers = 4;
Var lastRetriviedData = -1;
Var neuralNetwork = loadNeuralNetworkFromFile();
Var trainingSet = getFile("trainingSet");

Method JSON retrieveData(JSONConsulta){
 Var http = getHttpConection(urlRetrieve);
 http.setMethod("GET");
 Var JSON = http.sendRequest(JSONConsulta,timeout);
 http.close();
 return JSON;
}

Method void retrainNeuralNetwork(){
 Var date = timer.getData();
 Var timeInterval = date - period;
 Var JSONConsult = "{type:wrong, timestamp:date}>= && >={type:wrong,
timestamp:period}"
 Var JSON = retrieveData(JSONConsult);
 if(JSON.value){
 trainingSet.append(lastRetriviedData + ! lastResult);
 neuralNetwork.train(trainingSet);
 }
}

Method void atualizeRetriviedData(JSON){
 if(JSON.elements.size == sensorsNumbers || lastRetriviedData == -1){
 lastRetriviedData = JSON;
 }else{
 JSON = lastRetriviedData;
 }
}

Method void detectLeak(){
 retrainNeuralNetwork();
 Var date = timer.getData();
 Var timeInterval = date - period;
 Var JSONConsulta = "{ type:waterflow, timestamp:date}" >= && >= "{ type:waterflow,
timestamp:date}" ;
 Var JSON = retrieveData(JSONConsulta);
 atualizeRetriviedData(JSON);
 Var result = neuralNetwork.classifie(JSON);
 Var date = timer.getDate();
 Var JSONResult = "{type:leakdetection, result:result, timestamp:date}";
 persistData(JSONResult);

}

Method void persistData(JSON){
 Var http = getHttpConection(urlPersist);
 http.setMethod("POST");
 http.sendRequest(JSON,timeout);
 http.close();
}

Method void main(args[]){
 new Alarm(period*1000,detectLeak(),'infinite');
}

}

Class SolenoidValveActor {

Var url = "db.lisha.ufsc.br/retrieveData";
Var period = 30;
Var timeout = 10000;
Var actuatorId = 1;
Var valve = new GPI/O(pin 5);

Method JSON retrieveData(JSONConsulta){
 Var http = getHttpConection(urlRetrieve);
 http.setMethod("GET");
 Var JSON = http.sendRequest(JSONConsulta,timeout);
 http.close();
 return JSON;
}

Method void actuate(){
 Var date = timer.getData();
 Var timeInterval = date - period;
 Var JSONConsult = "{ type:leakDetection, timestamp:date}" >= && >= "{
type:leakDetection, timestamp:date}"
 Var JSON = retrieveData(JSONConsult);
 if(JSON.result == 1%10 && JSON.result/10 == actuatorid){
 valve.setValue(1);
 return;
 }
 if(JSON.result == 'solved'){
 valve.setValue(0);
 }
}

Method void main(args[]){
 Var Alarm = new Alarm(period*1000,actuate(),'infinite');
}

}

7. Technologies and project overview:
All the devices used in the project were provided by the Software/Hardware Integration Laboratory (LISHA).

7.1. Water Flow Sensor
Will be used a simple water flow sensor that has a turbine and sends a signal each time the turbine do a
complete spin. How the water flows meter consumption is low and have a turbine that rotates with the
water flow (this is how it works) it could be powered using the power generated by the rotation of the
turbine.

http://bazaar.seeedstudio.com/item_detail.html?p_id=635

7.2. Dynamo
Description

7.3. Eletronic valve (Registro/válvula)
Description

7.4. EPOSMote III
The Embedded Parallel Operational System (EPOS) will run inside of EPOSMote III. The epos mote uses a 3v
power source (at least that's what I remember), to support that, we can use AA stacks of 1.5v or a 12v
battery with an electrical transformer embedded can also be used.

7.5. Sonar
7.6. Humidity sensor
7.7. 3v power source
7.8. 5v power source
7.9. 220v power source

http://www.lisha.ufsc.br/HomePage
http://bazaar.seeedstudio.com/item_detail.html?p_id=635
http://epos.lisha.ufsc.br/HomePage

	[Table of contents]
	[Table of contents]
	Table of contents

	1. Members:
	2. Schedule:
	3. About the project:
	4. Model
	4.1. Consumption monitoring
	4.2. Water leaking detection
	4.2.1. Fuzzy logic
	4.2.2. Neural network

	4.3. Nonfunctional model
	4.3.1. Power source
	4.3.2. Sensor Consumption
	4.3.3. Sonar sensor
	4.3.4. Solenoid valve
	4.3.5. Leak detection
	4.3.6. Sensor update time

	4.4. Water reservatory monitoring

	5. Architecture
	6. Computer Model
	7. Technologies and project overview:
	7.1. Water Flow Sensor
	7.2. Dynamo
	7.3. Eletronic valve (Registro/válvula)
	7.4. EPOSMote III
	7.5. Sonar
	7.6. Humidity sensor
	7.7. 3v power source
	7.8. 5v power source
	7.9. 220v power source

