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Motivation
Due to outdated version of current EPOS' compiler, the latest standard available is C++0x, a previous
version of C++11. Furthermore many features cannot be used by the epos user, features such as the ones
listed bellow.

Some C++ new features unimplemented in C++0x of GCC 4.4.4

Lambda

Lambda expressions were implemented in C++11 and are a mechanism for specifying a function object.
The primary use for a lambda is to specify a simple action to be performed by some function.

Lambda expressions bring some advantages, one of them is making the code easier to read. This might
sound a little weird because some programmers think that lambda expressions by themselves are ugly, but
consider this case:

An example of functional programming in c++

std::for_each( begin, end, doer );

The problem with this is that the function (object) doer:
- Specifies what's done in the loop
- Yet somewhat hides what's actually done (you have to look up the function object's operator()'s
implementation)
- Must be defined in a different scope than the std::for_each call
- Contains a certain amount of boilerplate code
- Is often throw-away code that's not used for anything but this one loop construct

Lambda considerably improves on the aspects listed above, using as example the std::sort, where the third
argument is a binary function that accepts two elements in the range as arguments and returns a value
convertible to bool.

On pre C++11 we could sort a vector in reverse order that way:

bool comp(int a, int b) {
  return a > b;
}

int main() {
  std::vector<int> vint = {32,71,12,45,26,80,53,33};
  std::sort(vint.begin(), vint.end(), comp);
}

In C++11 we can use a lambda as the function comp:



int main() {
  std::vector<int> vint = {32,71,12,45,26,80,53,33};
  //auto = bool (*)(int a, int b)
  auto comp = [](int a, int b) { return a > b; };
  std::sort(vint.begin(), vint.end(), comp);
}

By bringing the implementation of the function closer to where it is used the Lambda Expression makes the
code easier to read . That way you don’t need to break the reading flow of your code because you had to
look elsewhere.

An interesting aspect of lambda expressions in C++ is your capacity to capture variables. By “capture” we
mean you can use a variable declared outside of the lambda inside the expression. Or, if you are using
C++14 or above, your captured variable can have an initializing expression inside the lambda.

Captured variables can have an initializing expression:

auto timer = [val = system_clock::now()] { return system_clock::now() - val; };
// ... do stuff ...
timer();   // returns time since timer creation

In this example, val is assigned the current time which is then returned by the lambda expression. val
doesn't need to be an existing variable, so this is in effect a mechanism for adding data members to the
lambda. The types of these members are inferred by the compiler.

Also, in C++14 we are allowed to capture move-only variables:

auto p = make_unique<int>(10);
auto lmb = [p = move(p)] { return *p; }

Null pointer constant

The constant NULL can be implemented like:

#define NULL 0

It may lead to ambiguity:

int foo(int);
int foo(int*);

foo(NULL); // don't know if use foo(int) or foo(int*)

To solve this ambiguity nullptr can be user instead of NULL, because nullptr is always consider a pointer type:

int foo(int);
int foo(int*);

foo(nullptr); // always use foo(int*)

Forward declarations for enums

Now you can just declare an enum without specifying its elements, but you need to declare its storage



type.

It can be useful in headers like:

enum number : unsigned;
std::ostream& operator<<(std::ostream &os, number &n);

So the enum can be specified at another file.

Structured Bindings

Structured Bindings provide an easy way to access all values of an tuple or user-defined type.

Consider the following struct:

struct val{
    int a;
    char b;
    float c;
};

On Pre C++17 we would access each value individually as:

val aa = { 12,'a',3.123 };

auto i = aa.a;
auto f = aa.b;
auto g = aa.c;

Or using std::tie to unpack all of them as follows:

val aa = { 12,'a',3.123 };
int i;
char f;
float h;

std::tie(i,f,g) = aa;

On C++17 we could use automatic type deduction combined with structured bindings to access all values in a single
line v.g.:

val aa = { 12,'a',3.123 };

auto [i, f, g] = aa;

std::map<int,int> myMap = {{1,2},{3,4}};
for (const auto & [k,v] : myMap) {
    // now you can using the map iterator
}

Init Statement in conditionals

This structure enables an init statement to if and switch as the init statement
that while and for already have. As the while and for init statement, there is
no leaking into the ambient scope and this structure prevents an explicit scope.

Consider the following leaking example:



auto var = foo();
if (var != SUCCESS) {
    // ...
} else {
    // ...
}

On above example var is leaking into the ambient scope. We could explicit create a new scope, avoiding
the leaking:

{
    auto var = foo();
    if (var != SUCCESS) {
        // ...
    } else {
        // ...
    }
}

At least with the new Init Statement we can avoid the leaking and the explicit scope as:

if (auto var = foo(); var != SUCCESS) {
    // ...
} else {
    // ...
}

In resume, the init statement work as following:

if (init; cond) {
    // ...
}

switch (init; cond) {
    // ...
}

Inline Variables

This feature extends the idea of header defined inline functions to
variables and constant. An inline variable means that it is immediately defined
and potentially repeated between the translation units, and that the compiler
ensures they will be the same between then. So now it is possible to define
static variables or global variables at header level, letting the linker to
always refer to a same entity even if the definition is seen more time due to
multiple inclusion inside different translation units.

So it is possible to do:

struct MyClass
{
    static inline const int value = 123;
};



Instead of:

struct MyClass
{
    static const int value;
};

With a separate source file to redefine it as following:

const int MyClass::value = 123;

Constexpr if

This feature provide a static-if, allowing branches of an if statement to be discard at
compile-time based on a constant conditional expression.

if constexpr(cond)
     statement1; // Discarded if cond is false
else
     statement2; // Discarded if cond is true

It can be well used on metaprogramming/template code.

e.g.: a metaprogramming fibonacci:

template<int  N>
constexpr int fibonacci() {return fibonacci<N-1>() + fibonacci<N-2>(); }
template<>
constexpr int fibonacci<1>() { return 1; }
template<>
constexpr int fibonacci<0>() { return 0; }

Now it could be implemented with constexpr if as following:

template<int N>
constexpr int fibonacci() {
    if constexpr (N>=2)
        return fibonacci<N-1>() + fibonacci<N-2>();
    else
        return N;
}

Folding expressions

This features make possible to performe an logic/arithmetic operation over a parameter pack. This could be
done on post C++11 by doing a recursion.

e.g. A sum:

auto sum(){
    return 0;
}
template<typename T1, typename ...T>
auto sum(T1 s, T... ts) {
    return s + sum(ts...);
}



Now it could be done simpler as:

template<typename ...Args> sum(Args ...args){
    return (args + ...);
}

This feature suportes the following operations:

+    -   *     /    %  ^  &  |  ~  =  <  >  <<  >>
+= -= *=  /=  %=  ^=  &=  |=  <<=  >>=
== != <= >= &&  ||  ,  .*  ->*

Moreover, the fold expressions has four forms and they differ by having or not an initial value and by the
direction that the operation is reduced.

(... op pack)

Where pack is an unexpanded parameter pack, and op is one of the operations listed above. Here the
expression is reduced from left to right with op.

(pack op ...)

Here the expression is reduced from right to left with op.

(init op ... op pack)

Where init is an initial value. Here the expression is reduced from left to right with op and initial value init.

(pack op ... op init)

Here the expression is reduced from right to left with op and initial value init.

The initial value is crucial when the binary operation op has no default value, that is, when an operation
does not have an default value for empty packs.

So...
Our main motivation is to make new features, as the ones listed above, available for the epos user and, if
possible, to modernize EPOS making it even more readable.

Goals
In order to make available features from the latest C++ standard (as the ones listed above) , we will
upgrade the EPOS G.C.C. compiler to 7.2.0, the newest version available.

Methodology
Upgrade: Update to subsequent C++ standard version.
Refactoring: Correct errors due to previous upgrade.
Coding: Implement and test an EPOS application with the new standard.
Restart: Repeat the process.



Tasks
Development of the project plan and literature review.1.
Compile G.C.C 7.2.0 for IA32 and make it work with EPOS.2.
Upgrade EPOS to C++14 standard.3.
Upgrade EPOS to C++17 standard.4.
Upgrade some EPOS' feature to C++17 standard.5.

Deliverables
D1 - Development of the project plan and literature review
D2 - Toolchain used to make a G.C.C. 7.2.0 compatible EPOS and any required changes on EPOS to
work properly with the new G.C.C. version.
D3 - EPOS compatible with C++14 and an EPOS application with a feature from the C++14.
D4 - EPOS compatible with C++17 and an EPOS application with a feature from the C++17.
D5 - Some EPOS' feature with C++17 .
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Toolchain
Our objective is to use C++17 on EPOS. To active this out first step is to update EPOS's toolchain. The EPOS'
toolchain is script that create an GCC cross-compiler for IA32 architecture compatible with EPOS.
The new toolchain was build with Binutils 2.28.1, GCC 7.2.0 and Newlib 2.5.0. We used the script
toolchain.sh to build it.

To make sure that the toolchain was not based GLibC, we used prove.sh to compile and link a simple
program and list its symbols, that way we could see if there is any link with GLibC. We get the following
output that guarantees we are not using GLibC.

00400014 B __bss_start
00400004 d __CTOR_END__
00400000 d __CTOR_LIST__
0040000c d __DTOR_END__
00400008 d __DTOR_LIST__
00400014 D _edata
004001b8 B _end
00000050 T __epos_app_entry



00000b80 T _exit
00000b60 T __exit
00002eb0 T _fini
0000246a t .GO
00000000 T _init
00400020 b initialized.877
00000040 T main
00000b90 T _panic
00000960 T _print
00000048 T _start

We have some problem running the toolchain script. In some computers its gives an error
related to libstdc++-v3, that we couldn't figure out.

The specs from the computer used are listed below and the installed packages are listed in packages.txt
and with more information in packages_infos.txt.

OS: Arch Linux x86_64
Host: 80E6 Lenovo Z40-70
Kernel: 4.13.8-1-ARCH
CPU: Intel i7-4500U (4) @ 3.000GHz
GPU: Intel Integrated Graphics
GPU: NVIDIA GeForce 840M

All files mentioned are available at https://gitlab.com/evandro-crr/epos-ia32-gcc-7.2.0.git
and you can download the GCC 7.2.0 for IA32 archtecture compatible with EPOS at
https://gitlab.com/evandro-crr/epos-ia32-gcc-7.2.0/tree/master/ia32-gcc-7.2.0

Refactoring EPOS
To use std=c++17 to make EPOS we had to refactor the source code to the new standard. It was a gradual
work, first we changed to std=c++11, then to std=c++14 and finally to std=c++17. All process can be seen
at this Git repository. At the time we successfully compiled the EPOS under a new standard we marked a
commit with a tag.

To build the EPOS' trunk with the new GCC using make we need to specify that we want to use our new
compiler. There are two options:

add the epos-gcc-7.2.0/bin to $PATH, and change EPOS' makedefs with ia32_COMP_PREFIX :=
epos-ia32-
change EPOS' makedefs with ia32_COMP_PREFIX := <path-to-epos-gcc-7.2.0/bin>/epos-ia32-

Errors while compiling EPOS to C++11
Here we describe all the erros we have found while compiling EPOS with -std=c++11 and executing make.
We also described their meaning and how we solved them. All sections are related to Git commits in our
repository, thus they can be replicated at will.

sector .ctors and .dtors changed names to .init_array and .fini_array
Around six years ago, GCC adopted the .init_array and .fini_array as a mean to initialize global variables.
This new standard has already been supported by glibc since 1999 and its main features are:

https://gitlab.com/evandro-crr/epos-ia32-gcc-7.2.0.git
https://gitlab.com/evandro-crr/epos-ia32-gcc-7.2.0/tree/master/ia32-gcc-7.2.0
https://gitlab.com/evandro-crr/epos2.git


It guarantees the priority in the initialization of variables.
It addresses an old quirk of the .ctors that is the fact it is iterated backwards, making the accesses to
the disk really slow.

During the global variables' initialization the method __do_global_ctors_aux, called by _init, iterating
throw the global constructors that was stored at sector .ctors.

Due to the change of sectors name, the application falls to an error during the initialization. You can see
that CTOR_END, where the iteration begin, point to an empty sector.

sector .ctors

00400000 <__CTOR_LIST__>:
  400000:       ff                      (bad)
  400001:       ff                      (bad)
  400002:       ff                      (bad)
  400003:       ff 00                   incl   (%eax)

00400004 <__CTOR_END__>:
  400004:       00 00                   add    %al,(%eax)

It should be some thing like this:

sector .ctors

00400000 <__CTOR_LIST__>:
  400000:       ff                      (bad)
  400001:       ff                      (bad)
  400002:       ff                      (bad)
  400003:       ff 60 00                jmp    *0x0(%eax)
  400006:       00 00                   add    %al,(%eax)
  400008:       10 02                   adc    %al,(%edx)
  40000a:       00 00                   add    %al,(%eax)
  40000c:       a0 05 00 00 10          mov    0x10000005,%al
  400011:       06                      push   %es
  ...
  40002c:       30 51 00                xor    %dl,0x0(%ecx)
  40002f:       00 00                   add    %al,(%eax)
  400031:       52                      push   %edx

00400034 <__CTOR_END__>:
  400034:       00 00                   add    %al,(%eax)

But there was a sector called .init_array. After some failed attempts to use the sector .init_array we
decide to just disable the init/fini_array with flag --disable-initfini-array while compiling GCC.
That makes the compiler does not use any of the new features. But we still had to change the sections
names from “.ctors” and “.dtors” to “.init_array” and “.fini_array” even to access the constructors and
destructors the old way.

src/architecture/ia32/ia32_crtend.c

void _init() __attribute__ ((section(".init")));



typedef void (*fptr)(void);

static fptr __CTOR_END__[1] __attribute__((section(".init_array"))) = { (fptr)0 };
static fptr __DTOR_END__[1] __attribute__((used, section(".fine_array"))) = { (fptr)0 };

static void __do_global_ctors_aux()
{
    fptr * p;
    for(p = __CTOR_END__ - 1; *p != (fptr) -1; p--)
        (*p)();
}

void _init()
{
    __do_global_ctors_aux();
}

void __epos_app_entry() __attribute__ ((section(".init"), weak, alias ("_init")));

src/architecture/ia32/ia32_crtbegin.c

void _fini() __attribute__ ((section(".fini")));

typedef void (*fptr) (void);

static fptr __CTOR_LIST__[1] __attribute__ ((used, section(".init_array"),
aligned(sizeof(fptr)))) = { (fptr)(-1) };
static fptr __DTOR_LIST__[1] __attribute__ ((section("..fini_array"),
aligned(sizeof(fptr)))) = { (fptr)(-1) };

static void __do_global_dtors_aux()
{
    fptr * p;
    for(p = __DTOR_LIST__ + 1; *p; p++)
        (*p)();
}

void _fini()
{
    static int initialized = 0;

    if(!initialized) {
        initialized = 1;
        __do_global_dtors_aux();
    }
}

If you want to know why this new standard was adopted we recommend reading this bugzilla discussion
thread .

union doesn't support flexible array member
Error log

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=46770
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=46770


union doesn't support flexible array member:
In file included from bignum.cc:3:0:
include/utility/bignum.h:29:20: error: flexible array member in union
         Digit data[];
                   ^
include/utility/bignum.h:33:20: error: flexible array member in union
         Digit data[];
                   ^

C specifies that, as a special case, the last element of a structure with more than one named member may
have an incomplete array type; this is called a flexible array member. These flexible array members may be
defined only in structures, not in unions.

As a solution we used a C struct hack, we initialized the array with size 0. Actually this is a GCC non-
standard extension, while compiling with GNU Standard (using -pedantic-errors) it does implies an error,
but even in this case, it is possible to bypass by initializing the array with size 1 without getting compiling
errors about this matter. As this is not an issue in this project, the array was initialized with the C struct
hack.

calloc signature has changed
Error log

In file included from malloc.cc:4:0:
include/utility/malloc.h: In function 'void* calloc(size_t, unsigned int)':
include/utility/malloc.h:21:19: error: declaration of 'void* calloc(size_t, unsigned int)'
conflicts with built-in declaration 'void* calloc(long unsigned int, long unsigned int)' [-
Werror=builtin-declaration-mismatch]
inline void * calloc(size_t n, unsigned int bytes) {
              ^

The calloc signature in C++ is void* calloc(size_t, size_t), as size_t is always big enough to store the
biggest theoretically possible non-pointer object. On the newer version it is equivalent to long unsigned.
To avoid further issues with maximum size of variables we changed the signature to void*
calloc(size_t, size_t) (on our C++11 Git Tag though, it’s still with long unsigned) ; since the size_t
type changes his size accordingly.

insert_first, insert_tail and insert_head was not declared in the scope
Error log

include/utility/list.h:486:25: error: 'insert_first' was not declared in this scope, and no
declarations were found by argument-dependent lookup at the point of instantiation [-
fpermissive]
             insert_first(e);
             ~~~~~~~~~~~~^~~
include/utility/list.h:486:25: note: declarations in dependent base
'EPOS::S::U::Simple_List<EPOS::S::U::Data_Observer<EPOS::S::U::Buffer<EPOS::S::NIC,
EPOS::S::Ethernet::Frame, void, EPOS::S::U::Dummy>, short unsigned int>,
EPOS::S::U::List_Elements::Singly_Linked_Ordered<EPOS::S::U::Data_Observer<EPOS::S::U::Buffe
r<EPOS::S::NIC, EPOS::S::Ethernet::Frame, void, EPOS::S::U::Dummy>, short unsigned int>,
short unsigned int> >' are not found by unqualified lookup
include/utility/list.h:486:25: note: use 'this->insert_first' instead
include/utility/list.h:497:28: error: 'insert_tail' was not declared in this scope, and no
declarations were found by argument-dependent lookup at the point of instantiation [-



fpermissive]
                 insert_tail(e);
                 ~~~~~~~~~~~^~~
include/utility/list.h:497:28: note: declarations in dependent base
'EPOS::S::U::Simple_List<EPOS::S::U::Data_Observer<EPOS::S::U::Buffer<EPOS::S::NIC,
EPOS::S::Ethernet::Frame, void, EPOS::S::U::Dummy>, short unsigned int>,
EPOS::S::U::List_Elements::Singly_Linked_Ordered<EPOS::S::U::Data_Observer<EPOS::S::U::Buffe
r<EPOS::S::NIC, EPOS::S::Ethernet::Frame, void, EPOS::S::U::Dummy>, short unsigned int>,
short unsigned int> >' are not found by unqualified lookup
include/utility/list.h:497:28: note: use 'this->insert_tail' instead
include/utility/list.h:501:28: error: 'insert_head' was not declared in this scope, and no
declarations were found by argument-dependent lookup at the point of instantiation [-
fpermissive]
                 insert_head(e);
                 ~~~~~~~~~~~^~~
include/utility/list.h:501:28: note: declarations in dependent base
'EPOS::S::U::Simple_List<EPOS::S::U::Data_Observer<EPOS::S::U::Buffer<EPOS::S::NIC,
EPOS::S::Ethernet::Frame, void, EPOS::S::U::Dummy>, short unsigned int>,
EPOS::S::U::List_Elements::Singly_Linked_Ordered<EPOS::S::U::Data_Observer<EPOS::S::U::Buffe
r<EPOS::S::NIC, EPOS::S::Ethernet::Frame, void, EPOS::S::U::Dummy>, short unsigned int>,
short unsigned int> >' are not found by unqualified lookup
include/utility/list.h:501:28: note: use 'this->insert_head' instead

As it is, we could not understand why this methods are out of scope since class Simple_Ordered_List is an
specialization of Simple_List and those methods are implemented there. But explicitly using them was
enough to solve it.

size of _pmc_handler is CHANNELS again:

Error log

include/architecture/ia32/pmu.h: In static member function 'static void
EPOS::S::PMU_handler<VERSION>::perf_int_init() [with int VERSION = 6]':
include/architecture/ia32/pmu.h:1155:17  error: iteration 2 invokes undefined behavior [-
Werror=aggressive-loop-optimizations]
                 _pmc_handler[i] = 0;
                 ^~~~~~~~~~~~
include/architecture/ia32/pmu.h:1154:27  note: within this loop
             for (int i=0;i<8; i++)
                          ~^~
include/architecture/ia32/pmu.h: In static member function 'static void
EPOS::S::PMU_handler<VERSION>::PMU_int_handler(const unsigned int&) [with int VERSION = 6]':
include/architecture/ia32/pmu.h:1201:34  error: iteration 2 invokes undefined behavior [-
Werror=aggressive-loop-optimizations]
             if ((_pmc_handler[i] != 0) && ((perf_ovf_msr&(1ULL << i)) != 0))
                 ~~~~~~~~~~~~~~~~~^~~~~
include/architecture/ia32/pmu.h:1198:29  note: within this loop
         for (Reg32 i = 0; i < CHANNELS-1; i++)
                           ~~^~~~~~~~~~~~

As we could understand -O2 optimization brings -faggressive-loop-optimizations optimization, this
flag seems to disable the for condition, so GCC infer that inside the for boundary there are no signed
integer overflows or out-of-bound array accesses. And at some point it can causes an infinite loop. As it



seems when using pointer arithmetics GCC can not use -faggressive-loop-optimizations at those for's,
"solving" the error.

array subscript is above array bounds, GCC maybe the wrong one

Error log

e100_init.cc: In static member function 'static void EPOS::S::E100::init(unsigned int ':
e100_init.cc:62:18: error: array subscript is above array bounds [-Werror=array-bound ]
     _devices[unit].device = dev;
     ~~~~~~~~~~~~~^
e100_init.cc:63:18: error: array subscript is above array bounds [-Werror=array-bound ]
     _devices[unit].interrupt = IC::irq2int(irq);
     ~~~~~~~~~~~~~^

It is not the first time that GCC pointed false-positives "array subscript is above array bounds" error, but we
could not be sure. Another anomaly is that any new access to this array causes this error. Changing from
normal array access to pointer arithmetics access seems to solve it. When disabling all optimizations and
using normal array access, there is no problem, so it make us conclude that it is caused by an optimization.

Define Connection destructor as virtual
Error log

In file included from include/channel.h:7:0,
                 from include/communicator.h:6,
                 from include/dhcp.h:8,
                 from dhcp.cc:6:
include/tcp.h: In static member function 'static EPOS::S::TCP::Connection*
EPOS::S::TCP::attach(EPOS::S::TCP::Observer*, const Port&, const Address&)':
include/tcp.h:276:20: error: deleting object of polymorphic class type
'EPOS::S::TCP::Connection' which has non-virtual destructor might cause undefined behavior
[-Werror=delete-non-virtual-dtor]
             delete conn;
                    ^~~~
include/tcp.h: In static member function 'static void
EPOS::S::TCP::detach(EPOS::S::TCP::Observer*, EPOS::S::TCP::Connection*)':
include/tcp.h:286:16: error: deleting object of polymorphic class type
'EPOS::S::TCP::Connection' which has non-virtual destructor might cause undefined behavior
[-Werror=delete-non-virtual-dtor]
         delete conn;
                ^~~~

Connection is derived from multiple classes and because one of them has virtual functions, the connection
destructor must be virtual, this happens because it is unsafe to delete an instance of a derived class
through a pointer to a base class if the base class does not have a virtual destructor, because there will be
leak if the derived class (i.e. Connection) has any dynamically allocated objects.

suggest parentheses around operand of '!'
Error log

tcp.cc: In member function 'void EPOS::S::TCP::Connection::close_wait()':
tcp.cc:704:12: error: suggest parentheses around operand of '!' or change '&' to '&&' or '!'
to '~' [-Werror=parentheses]
         if(!_current->header()->flags() & RST)



            ^~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is a warning brought by -Wall and it is a way that GCC tells the user to take more attention to some
operations that, in general, people get wrong. Explaining with parenthesis which operator is in the and-
operation solves this.

Reg8 was undefined
Error log

include/tstp.h:210:9: error: 'typedef EPOS::S::CPU_Common::Reg8 EPOS::S::IEEE802_15_4::Reg8'
is private within this context
         Reg8 length() const { return MTU; } // Fixme: placeholder
         ^~~~
In file included from include/tstp.h:3: ,
                 from tstp.cc:6:
include/ieee802_15_4.h:18:23: note: declared private here
     typedef CPU::Reg8 Reg8;
                       ^~~~

The code here seemed to be unfinished, we think the author just forgot to add the complete path so we
completed it.

gcc sees System: :_preheap as char[[16], so reinterpret cast was necessary GCC now checks
allocation size on replacement new and throw a warning if you try to construct some thing bigger
than the allocated space.

Error log

init_system.cc: In constructor 'EPOS::S::Init_System::Init_System()':
init_system.cc:45:42: error: placement new constructing an object of type 'EPOS::S::Segment'
and size '20' in a region of type 'char [16]' and size '16' [-Werror=placement-new=]
             System::_heap_segment = new (&System::_preheap[0]) Segment(HEAP_SIZE, WHITE,
Segment::Flags::SYS);

_preheap is declared as static char _preheap(Traits<System>::multiheap ? sizeof(Segment) : 0)
+ sizeof(Heap); and the placement new is made inside the if bellow.

src/init/init_system.cc

if(Traits<System>::multiheap) {
            System::_heap_segment = new (&System::_preheap[0]) Segment(HEAP_SIZE, WHITE,
Segment::Flags::SYS);
            System::_heap = new (&System::_preheap[sizeof(Segment)])
Heap(Address_Space(MMU::current()).attach(System::_heap_segment, Memory_Map::SYS_HEAP),
System::_heap_segment->size());
}

So inside the if we are sure that _preheap has enough space for a Segment, but GCC doesn't see that way.
The alternative was to use a reinterpret_cast<> to bypass GCC verification.

This is the code now with the reinterpret_cast

if(Traits<System>::multiheap) {
            Segment *heap = reinterpret_cast<Segment*> (&System::_preheap[0]);
            new (heap) Segment(HEAP_SIZE, WHITE, Segment::Flags::SYS);

https://epos.lisha.ufsc.br/(Traits<System>::multiheap%20?%20sizeof(Segment)%20:%200)%20+%20sizeof(Heap)
https://epos.lisha.ufsc.br/(Traits<System>::multiheap%20?%20sizeof(Segment)%20:%200)%20+%20sizeof(Heap)


            System::_heap_segment = heap;
            System::_heap = new (&System::_preheap[sizeof(Segment)])
Heap(Address_Space(MMU::current()).attach(System::_heap_segment, Memory_Map::SYS_HEAP),
System::_heap_segment->size());
}

declare Adapter destructor as virtual
Error log

In file included from kernel_binding.cc:4:0:
include/framework/agent.h: In member function 'void EPOS::S::Agent::handle_ipc()':
include/framework/agent.h:409:16: error: deleting object of polymorphic class type
'EPOS::S::Adapter<EPOS::S::Port<EPOS::S::IPC> >' which has non-virtual destructor might
cause undefined behavior [-Werror=delete-non-virtual-dtor]
         delete comm;
                ^~~~

This error is the same as in "Define Connection destructor as virtual", and the solution is the same too,
making Adapter destructor virtual.

Perfect forwarding
C++11 introduce the concept of Rvalue reference with &&, you can learn more about it in this link.

That's what the following error is about.

Error log

include/framework/message.h:119:18: error: cannot bind rvalue reference of type 'const
unsigned int&&' to lvalue of type 'const unsigned int'
         SERIALIZE(_parms, index, an ...);
         ~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~
include/system/meta.h:196:6: note:   initializing argument 3 of 'void
EPOS::S::SERIALIZE(char*, int, const T&&) [with T = unsigned int]'
 void SERIALIZE(char * buf, int index, const T && a) {
      ^~~~~~~~~

SERIALIZE has as third argument a const T && so it necessarily needs to be a Rvalue, and in order to pass
a Lvalue we use static_cast<T&&> to make it a Rvalue. Another problem is that function void
Message::out(const Tn& ...) calls SERIALIZE forwarding a parameter pack. Because it is a pack we can
not deduce the type of the parameters inside it, so it was necessary to implement the function move
bellow, that can infer its type and then cast it to Rvalue.

template <class T>
inline T&& move(T& a) {
  return static_cast<T&&>(a);
}

The function move was used to infer the type of an for the cast.

Change necessary in SERIALIZE call

-        SERIALIZE(_parms, index, an ...);
+        SERIALIZE(_parms, index, move(an)...);

http://thbecker.net/articles/rvalue_references/section_01.html


C++11 Example
Just to use some features from C++11, the application producer_consumer was changed transferring the
function consumer to a lambda function.

producer_consumer_with_lambda.cc

#include <utility/ostream.h>
#include <thread.h>
#include <semaphore.h>
#include <alarm.h>

using namespace EPOS;

const int iterations = 100;

OStream cout;

const int BUF_SIZE = 16;
char buffer[BUF_SIZE];
Semaphore empty(BUF_SIZE);
Semaphore full(0);

int main()
{
    auto consumer = []() {
      int out = 0;
      for(int i = 0; i < iterations; i++) {
          full.p();
          cout << "C<-" << buffer[out] << "\t";
          out = (out + 1) % BUF_SIZE;
          Alarm::delay(5000);
          empty.v();
      }

      return 0;
    };

    Thread * cons = new Thread(consumer);

    // producer
    int in = 0;
    for(int i = 0; i < iterations; i++) {
        empty.p();
        Alarm::delay(5000);
        buffer[in] = 'a' + in;
        cout << "P->" << buffer[in] << "\t";
        in = (in + 1) % BUF_SIZE;
        full.v();
    }

    cons->join();

    cout << "The end!" << endl;



    delete cons;

    return 0;
}

The Thread constructor needs a template <class... Ts> int (*)(Ts...) as first parameter, but by
using auto the type of consumer is defined as main()::<lambda()>.

Instead of use auto consumer we could use int (*consumer)(), but it is way less readable. So an
alternative was to change the Thread constructor as follow.

old definitinon

template<typename ... Tn>
Thread(int (* entry)(Tn ...), Tn ... an);
template<typename ... Tn>
Thread(const Configuration & conf, int (* entry)(Tn ...), Tn ... an);

new definition

template<class T, typename ... Tn>
Thread(T entry, Tn ... an);
template<class T, typename ... Tn>
Thread(const Configuration & conf, T entry, Tn ... an);

By just being flexible with the parameter entry, and assigning it to a template <class... Ts> int
(*)(Ts...) as int (*_entry) (Tn...) = entry; in the constructor's body, you pass any lambda that
can be converted to a template <class... Ts> int (*)(Ts...).

Errors while compiling EPOS to C++14
In this section we describe the only erro we have found while compiling EPOS with -std=c++14 and
executing make. As well its meaning and how we solved it.

By pass operator delete (void *ptr, long unsigned size)
Error log

lib/libsys_ia32.a(thread.o): In function `EPOS::S::Thread::~Thread()':
thread.cc:(.text._ZN4EPOS1S6ThreadD2Ev+0x178): undefined reference to `operator
delete(void*, unsigned long)'

The C++14 add two sized delete signature: void operator delete(void* ptr, std::size_t size) and
void operator delete[](void* ptr, std::size_t size). The idea is to minimize the overhead at
deleting objects by passing the control of how many bytes will be deleted to the programmer. When using
deletes operations without size, the object structure keeps its size in bytes to be used when the operation is
called. With the new ones, one could change how the object is structured to do not store this information,
saving space and time (because there will not be necessary to search for its size) by specifying the size in
bytes of the structured being deleted.
But to use it at EPOS it would be necessary to adapt the Heap implementation so it would not store the
objects sizes, as well as add the support to this new delete operators.
Because our main goal is to compile EPOS with C++14 we just added some simple functions to bypass the



necessity of the sized deletes, as follow:

include/utility/malloc.h

void operator delete(void * ptr, size_t);
void operator delete[](void * ptr, size_t);

include/utility/malloc.h

void operator delete(void * object, size_t) {
    return free(object);
}
void operator delete[](void * object, size_t) {
    return free(object);
}

Note that the error says that the undefined function is delete(void*, unsigned long) but we actually
implemented delete(void*, std::size_t) (not in our c++14 tag) this happens because the delete
signature uses std::size_t and its current implementation is unsigned long(as already discussed).

Errors while compiling EPOS to C++17
In this section we describe the only erro we have found while compiling EPOS with -std=c++17 and
executing make. As well its meaning and how we solved it.

register keyword was deprecated in C++11
Error log

In file included from include/cpu.h:119:0,
                 from include/utility/spin.h:6,
                 from include/utility/heap.h:8,
                 from heap.cc:3:
include/architecture/ia32/cpu.h: In static member function 'static T
EPOS::S::CPU::tsl(volatile T&)':
include/architecture/ia32/cpu.h:343:20: error: ISO C++1z does not allow 'register' storage
class specifier [-Werror=register]
         register T old = 1;
                    ^~~
include/architecture/ia32/cpu.h: In static member function 'static T
EPOS::S::CPU::finc(volatile T&)':
include/architecture/ia32/cpu.h:350:20: error: ISO C++1z does not allow 'register' storage
class specifier [-Werror=register]
         register T old = 1;
                    ^~~
include/architecture/ia32/cpu.h: In static member function 'static T
EPOS::S::CPU::fdec(volatile T&)':
include/architecture/ia32/cpu.h:357:20: error: ISO C++1z does not allow 'register' storage
class specifier [-Werror=register]
         register T old = -1;
                    ^~~
include/architecture/ia32/cpu.h: In static member function 'static int
EPOS::S::CPU::bsf(EPOS::S::CPU_Common::Log_Addr)':
include/architecture/ia32/cpu.h:539:31: error: ISO C++1z does not allow 'register' storage
class specifier [-Werror=register]
         register unsigned int pos;



                               ^~~
include/architecture/ia32/cpu.h: In static member function 'static int
EPOS::S::CPU::bsr(EPOS::S::CPU_Common::Log_Addr)':
include/architecture/ia32/cpu.h:544:22: error: ISO C++1z does not allow 'register' storage
class specifier [-Werror=register]
         register int pos = -1;
                      ^~~
include/architecture/ia32/cpu.h: In instantiation of 'static T EPOS::S::CPU::tsl(volatile
T&) [with T = bool]':
include/utility/spin.h:55:31:   required from here
include/architecture/ia32/cpu.h:343:20: error: ISO C++1z does not allow 'register' storage
class specifier [-Werror=register]
         register T old = 1;
                    ^~~

The error addressed here is about the deprecated register keyword. It is a storage class specifier, a part
of the decl-specifier-seq of a name's declaration syntax. Together with the scope of the name, storage class
specifiers control two independent properties of the name: Its storage duration and its linkage.

The register specifier indicates automatic storage duration. And the most important thing to understand
the register keyword: its presence could be used as a hint for the optimizer that the declared variable will
be heavily used; it is a hint to store its value in a CPU register.

In C, the address of a register variable cannot be taken, but until C++17, a variable declared register
was semantically indistinguishable from a variable declared without any storage class specifiers. And the
hint given by register could be ignored, and in most implementations it would be ignored if the address of
the variable was taken.

So, in C++17, unlike C and previous C++ standards, variables cannot be declared register. We then
removed the register keyword from the declarations above. This change does not cause much impact
because it was just a hint to the optimizer as well because of its specific use cases.

C++17 Example
Just to use some features from C++17, we created a fibonacci application that uses constexpr if.

fib_con_if.cc

#include <utility/ostream.h>

using namespace EPOS;
OStream cout;
template<int N>
int fibonacci() {
    if constexpr (N>=2)
        return fibonacci<N-1>() + fibonacci<N-2>();
    else
        return N;
}
int main() {
    cout << fibonacci<44>();
    return 0;
}



To use a constexpr if statement we need that the if condition to be a constant expressions, to achieve this
we used templates.

Conclusion

At the end of our project we reached some unexpected conclusions. We hoped that the new standard could
bring some improvements to the actual design of EPOS, but we couldn’t find anything that could make a big
impact in embedded systems specifically. Although it was a little disappointing we don't think that all this
work were for nothing. This could be the first step to upgrade EPOS to a future standard that really brings
the wanted improvements.

Future Works

There are some aspects of our project that we couldn’t fix while working on it. Our toolchain, as already
metioned, only worked on a specific PC configuration and we couldn’t replicated it on other machines.

One missing part of our work was a comparison between the assembly code generated by GCC 4.4.4 and
GCC 7.2.0. This results would show if the new compiler is worth using.

We also hope that anyone who wants to upgrade EPOS to a new standard in the future can use our work as
a base and have less trouble making the transition.
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