
EPOS 2 User Guide
Software/Hardware Integration Lab at UFSC

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024

Table of Contents
EPOS 2.2 User Guide 1 ..

Table of contents 1 ...
1. Introduction 4 ..

1.1. EPOS Overview 4 ...
1.2. OpenEPOS License 4 ...
1.3. Main Features 4 ..

2. Setting up EPOS 7 ...
2.1. Downloading EPOS 7 ..
2.2. Downloading the toolchain 7 ..

2.2.1. GCC 7 ..
2.2.2. as86/ld86 7 ...
2.2.3. 32-bit libs 7 ...

2.3. Installing 8 ...
3. Running EPOS 9 ...

3.1. Compiling 9 ..
3.2. Running 9 ...

3.2.1. Running on Bare Metal 10 ...
3.2.2. Running on Virtualized Host 10 ...

3.3. Configuring 10 ...
4. EPOS API 13 ..

4.1. Memory Management 13 ...
4.1.1. Dynamic Memory (Heap) 13 ...
4.1.2. Stacks 14 ..
4.1.3. Memory Segments 14 ...
4.1.4. Address Spaces 16 ..

4.2. Process Management 19 ..
4.2.1. Task 19 ...
4.2.2. Thread 21 ..
4.2.3. RT_Thread 25 ..
4.2.4. Scheduler 26 ...

4.3. Process Coordination (Synchronizers) 28 ...
4.3.1. Semaphore 28 ...
4.3.2. Mutex 29 ...
4.3.3. Condition 29 ..

4.4. Timing 31 ..
4.4.1. Clock 31 ..
4.4.2. Chronometer 32 ..
4.4.3. Alarm 34 ...
4.4.4. Delay 35 ..

4.5. Communication 36 ..
4.5.1. Link 36 ..
4.5.2. Port 37 ..
4.5.3. Mailbox 38 ...
4.5.4. Channel 39 ..
4.5.5. Network 39 ..
4.5.6. IPC 40 ..
4.5.7. TSTP 40 ...
4.5.8. TCP/IP 43 ...

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024

4.5.9. Networking Configuration 46 ..
4.6. Sensing and Actuation (Wireless Sensor Network) 48 ...

4.6.1. SmartData 48 ..
4.6.2. Unit 51 ..
4.6.3. Persistent Storage 60 ..
4.6.4. Transducers 63 ...

4.7. Utilities 66 ..
4.7.1. Containers 66 ..
4.7.2. OStream 85 ...
4.7.3. Random 87 ..
4.7.4. CRC 88 ..
4.7.5. Spinlock 89 ...
4.7.6. Observer 89 ..
4.7.7. Handler 95 ..
4.7.8. Buffer (Zero-Copy) 98 ...

4.8. Hardware Mediators 100 ..
4.8.1. CPU 100 ..
4.8.2. MMU 101 ...
4.8.3. TSC 101 ...
4.8.4. Machine 101 ..
4.8.5. IC 102 ..
4.8.6. RTC 103 ..
4.8.7. Timers 104 ..
4.8.8. UART 105 ..
4.8.9. NIC 107 ...
4.8.10. Radio 108 ..
4.8.11. EEPROM 108 ...

THIS MUST BE RELOCATED 108 ..
Review Log 109 ..

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 1

EPOS 2.2 User Guide

Table of contents
EPOS 2.2 User Guide
1. Introduction

1.1. EPOS Overview
1.2. OpenEPOS License
1.3. Main Features

2. Setting up EPOS
2.1. Downloading EPOS
2.2. Downloading the toolchain

2.2.1. GCC
2.2.2. as86/ld86
2.2.3. 32-bit libs

2.3. Installing
3. Running EPOS

3.1. Compiling
3.2. Running

3.2.1. Running on Bare Metal
3.2.2. Running on Virtualized Host

3.3. Configuring
4. EPOS API

4.1. Memory Management
4.1.1. Dynamic Memory (Heap)
4.1.2. Stacks
4.1.3. Memory Segments
4.1.4. Address Spaces

4.2. Process Management
4.2.1. Task
4.2.2. Thread
4.2.3. RT_Thread
4.2.4. Scheduler

4.3. Process Coordination (Synchronizers)
4.3.1. Semaphore
4.3.2. Mutex
4.3.3. Condition

4.4. Timing
4.4.1. Clock
4.4.2. Chronometer
4.4.3. Alarm
4.4.4. Delay

4.5. Communication
4.5.1. Link

#EPOS_2.2_User_Guide

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 2

4.5.2. Port
4.5.3. Mailbox
4.5.4. Channel
4.5.5. Network
4.5.6. IPC
4.5.7. TSTP

4.5.7.1. Configuration
4.5.7.2. Bootstrap
4.5.7.3. Interaction between components

4.5.7.3.1. Zero-copy Buffer Management
4.5.7.3.2. Metadata Gathering
4.5.7.3.3. Event Propagation

4.5.7.4. Coordinates
4.5.8. TCP/IP

4.5.8.1. ARP
4.5.8.2. DHCP
4.5.8.3. IP
4.5.8.4. ICMP
4.5.8.5. UDP
4.5.8.6. TCP

4.5.9. Networking Configuration
4.6. Sensing and Actuation (Wireless Sensor Network)

4.6.1. SmartData
4.6.2. Unit
4.6.3. Persistent Storage
4.6.4. Transducers

4.7. Utilities
4.7.1. Containers

4.7.1.1. Linkage Elements and Ranks
4.7.1.2. Iterators
4.7.1.3. Vector
4.7.1.4. Lists
4.7.1.5. Queue
4.7.1.6. Hash

4.7.2. OStream
4.7.3. Random
4.7.4. CRC
4.7.5. Spinlock
4.7.6. Observer

4.7.6.1. Observer/Observed
4.7.6.2. Conditional Observer x Conditionally Observed
4.7.6.3. Unconditional Observer x Unconditionally Observed with Data
4.7.6.4. Conditional Observer x Conditionally Observed with Data

4.7.7. Handler

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 3

4.7.8. Buffer (Zero-Copy)
4.8. Hardware Mediators

4.8.1. CPU
4.8.2. MMU
4.8.3. TSC
4.8.4. Machine
4.8.5. IC
4.8.6. RTC
4.8.7. Timers
4.8.8. UART

4.8.8.1. Example
4.8.9. NIC
4.8.10. Radio
4.8.11. EEPROM

THIS MUST BE RELOCATED
Review Log

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 4

1. Introduction
This document is a reference guide to the EPOS API. It is designed focusing on application
development with EPOS 2.2 (for other guides visit EPOS Documentation).

1.1. EPOS Overview
The Embedded Parallel Operating System (EPOS) aims at automating the development of
dedicated computing systems, so that developers can concentrate on what really matters: their
applications. EPOS relies on the Application-Driven Embedded System Design Method (ADESD)
proposed by Antônio Augusto Fröhlich to design and implement both software and hardware
components that can be automatically adapted to fulfill the requirements of particular applications.
Additionally, EPOS features a set of tools to select, adapt, and plug components into an application-
specific framework, thus enabling the automatic generation of an application-oriented system
instance. Such an instance consists of a hardware platform implemented in terms of programmable
logic, and the corresponding run-time support system implemented in terms of abstractions,
hardware mediators, scenario adapters and aspect programs.

The deployment of ADESD in EPOS is helping to produce components that are highly reusable,
adaptable, and maintainable. Low overhead and high performance are achieved by a careful
implementation that makes use of generative programming techniques, including static
metaprogramming. Furthermore, the fact that EPOS components are exported to users by means of
coherent interfaces defined in the context of the application domain largely improves usability. All
these technological advantages are directly reflected in the development process, reducing NRE costs
and the time-to-market of software/hardware integrated projects.

OpenEPOS is a streamlined version of EPOS in which more complex, less stable research components
have been removed to produce a system that can be easily used for industrial or university
applications.

1.2. OpenEPOS License
OpenEPOS 2.2 is licensed under the The GNU General Public Licence 2.0. In this site, EPOS and
OpenEPOS are used interchangeably to designate the specific set of components publicly released in
this site under the GPL license. Other components, not listed in this documentation and not released
through this site, are usually subject to more restrictive licenses. For additional information, please
contact epos@lisha.ufsc.br.

Older versions of OpenEPOS are licensed under EPOS Software License v1.0.

1.3. Main Features
An overview of the features currently implemented in each version as well as a list of supported
architectures and machines (i.e. platforms) is shown below. You can download the releases from here.

Feature Release

 1.0 1.1 1.2 2.0 2.1 2.2

Architectures AVR8 √ √ √ − − −

https://epos.lisha.ufsc.br/EPOS+Documentation
https://epos.lisha.ufsc.br/dl2
https://epos.lisha.ufsc.br/dl2
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
mailto:epos@lisha.ufsc.br
https://epos.lisha.ufsc.br/EPOS+Software+License+v1.0
https://epos.lisha.ufsc.br/EPOS+Software

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 5

 ARMv3 (ARM7) − √ √ − − −

 ARMv7-M − − − √ √ √

 x86 (IA-32) √ √ √ √ √ √

 x86_64 − − √ − − −

 PowerPC ≈ √ √ − − −

 MIPS ≈ √ √ − − −

Machines EPOSMote I (AVR8) √ − − − − −

 EPOSMote II (ARM7TDI) − √ √ − − −

 EPOSMote III (ARM Cortex-M3) − − − √ √ √

 PC √ √ √ √ √ √

 Atmega16 (AVR8) √ √ √ − − −

 Atmega128 (AVR8) √ √ √ − − −

 Atmega1281 (AVR8) √ √ √ − − −

 At90can128 (AVR8) √ √ √ − − −

 ML310 (PPC32) ≈ √ √ − − −

 LEON3 ≈ √ √ − − −

 Plasma (MIPS) ≈ √ √ − − −

LM3S9B96 (ARM Cortex-M3@QEMU) − − − √ √ √

Realview PBX (ARM Cortex-A9@QEMU) − − − − √ √

Raspberry PI3 (ARM Cortex-A53) − − − − − √

Xilinx Zynq-7000 (Cortex-A9MP) − − − √ √ √

Devices UART √ √ √ √ √ √

 USART √ √ √ − − √

 Ethernet √ √ √ √ √ √

 Radio (IEEE 802.15.4) √ √ √ √ √ √

 EEPROM √ √ √ √ √ √

 Flash √ √ √ √ √ √

 Timer √ √ √ √ √ √

 SPI √ √ √ √ √ √

PMU − − − − √ √

Process Multithreading √ √ √ √ √ √

 Real-time Scheduling √ √ √ √ √ √

 Multicore (SMP) √ √ √ √ √ √

 Synchronization √ √ √ √ √ √

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 6

Multitasking − − − √ √ √

Non-Intrusive Monitoring − − − − − √

Memory Dynamic Memory Allocation √ √ √ √ √ √

 Scratch-pad Memory − ≈ √ √ √ √

 Flash √ √ √ √ √ √

Timing Timed Events √ √ √ √ √ √

 Chronometer √ √ √ √ √ √

 Real-time Clock √ √ √ √ √ √

 Watch-dog Timer − − √ √ √ √

Communication C-MAC ≈ √ √ − − −

TSTP − − − √ √ √

IEEE 802.15.4 − − − √ √ √

 ELP ≈ √ √ √ √ √

 ADHOP ≈ √ √ − − −

 TCP/IP ≈ √ √ √ √ √

 SIP − ≈ √ − − −

 RTP − ≈ √ − − −

 PTP − ≈ √ − √ √

HeCoPS − √ − √ √ √

Power Power Management API √ √ √ ≈ ≈ ≈

 Energy-aware Scheduling √ √ √ ≈ √ √

 Energy-aware, Real-time Scheduling √ √ √ ≈ √ √

DVFS √ − − − √ √

SmartData Sensing − − − − √ √

Actuating − − − − √ √

Clerk − − − − − √

Machine Learning − − − − − √

Development Tools GCC 4.0.x √ √ √ − − −

 GCC 4.4.x √ √ √ √ √ √

 GCC 7.2.x − − − − √ √

 GCC 8.3.1 − − − − − √

QEMU √ √ √ √ √ √

 GDB on QEMU − √ √ √ √ √

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 7

2. Setting up EPOS
2.1. Downloading EPOS
You can download OpenEPOS releases from the download page and development versions from
LISHA's GitLab.

2.2. Downloading the toolchain
2.2.1. GCC
Recent versions of EPOS can go with any (recent) GCC version. However, since EPOS is itself the
operating system, the compiler cannot rely on a libc compiled for another OS (such as LINUX). A
cross-compiler is needed even if your source and target machines are x86-based PCs. You can use
your distro's cross-compilers (version 2.2 onwards), download a precompiled GCC for EPOS from the
downloads page (version 2.1 or older), or compile a newlib-based toolchain yourself following these
instructions. In case you want to compile EPOS for RISC-V (version 2.1 onwards) and your OS does not
have a native cross-compiler package, download a precompiled GCC for EPOS on the downloads page
(available for Fedora 32 onwards and Ubuntu 18.04 onwards) or compile a 32 bits linux-based
toolchain following the instructions on the official toolchain repository.

Distribution Target
Architecture

Packages

Fedora x86/x86_64 binutils-x86_64-linux-gnu gcc-c++-x86_64-linux-gnu

Fedora 32 bits ARM arm-none-eabi-binutils-cs arm-none-eabi-gcc-cs-c++
arm-none-eabi-newlib

Fedora 32 bits RISC-V autoconf automake python3 libmpc-devel mpfr-devel
gmp-devel gawk bison flex texinfo patchutils gcc gcc-
c++ zlib-devel expat-devel

Ubuntu 18.04
onwards

x86/x86_64 binutils-x86-64-linux-gnu bin86

Ubuntu 18.04
onwards

32 bits ARM binutils-arm-none-eabi gcc-arm-none-eabi

Ubuntu 18.04
onwards

32 bits RISC-V pkg-config libglib2.0-dev libpixman-1-dev autoconf
automake autotools-dev curl python3 libmpc-dev
libmpfr-dev libgmp-dev gawk build-essential bison
flex texinfo gperf libtool patchutils bc zlib1g-dev
libexpat-dev

2.2.2. as86/ld86
If you don't have the "as86" command installed, you need to install the bin86 (Ubuntu) or dev86
(Fedora) package. It is used to compile the PC's bootstrap code (which must be Intel 8086).

2.2.3. 32-bit libs
If your host is a 64-bit operating system, you will need to install a set of 32-bit libraries. The table
below shows the packages.

https://epos.lisha.ufsc.br/EPOS+Software
https://gitlab.lisha.ufsc.br/epos/epos/
https://epos.lisha.ufsc.br/EPOS+Software
https://epos.lisha.ufsc.br/GCC+Toolchain+for+EPOS
https://epos.lisha.ufsc.br/GCC+Toolchain+for+EPOS
https://epos.lisha.ufsc.br/EPOS+Software
https://github.com/riscv/riscv-gnu-toolchain

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 8

Distribution Packages

Ubuntu all versions ia32-libs lib32stdc++6 libc6-i386 libc6-dev-i386

Ubuntu 16.04 onwards Ubuntu all versions packages substituting ia32-libs for lib32z1
lib32ncurses5 libbz2-1.0:i386

Ubuntu 17.04 Ubuntu all versions packages and gcc-multilib g++-multilib

Ubuntu 18.04 Ubuntu all versions packages and gcc-multilib g++-multilib

Fedora glibc-devel.i686 libstdc++.i686 libstdc++-devel zlib.i686

2.3. Installing
Simply open a release tarball or clone a branch from the GitLab at the place you want EPOS to be
installed. You don't need to bother about the chosen path nor set any environment variable. EPOS is
fully self-contained.

If you also downloaded a toolchain tarball, open it at /usr/local/<architecture> whenever possible. If
you do not have access to that path, you'll have to adjust the makedefs file in EPOS' main directory
accordingly.

For instance, if you downloaded the ia32 toolchain, you should extract it at
/usr/local/ia32/gcc-7.2.0. If you downloaded the arm toolchain for EPOSMote III, you should
extract it at /usr/local/arm/gcc-7.2.0

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 9

3. Running EPOS
3.1. Compiling
At the directory where you installed EPOS' source code, just type:

$ make

The system will be configured and compiled (i.e. generated) successive times for each application
found in the app directory. Both software and hardware components will be generated according to
each application's needs and stored in the img directory.

If you have multiple applications or multiple deployment scenarios, but want to operate on a single
one, you can specify it using the APPLICATION parameter like this:

$ make APPLICATION=hello

If everything goes right, you should end with something like this:

EPOS bootable image tool

 EPOS mode: library
 Machine: pc
 Model: legacy_pc
 Processor: ia32 (32 bits, little-endian)
 Memory: 262144 KBytes
 Boot Length: 512 - 512 (min - max) KBytes
 UUID: a5a205927f92887e
 Creating EPOS bootable image in "hello.img":
 Adding bootstrap "/home/guto/epos/merge/img/boot_legacy_pc": done.
 Adding setup "/home/guto/epos/merge/img/setup_legacy_pc": done.
 Adding application "hello": done.
 Adding system info: done.

 Adding specific boot features of "legacy_pc": done.

 Image successfully generated (69784 bytes)!

3.2. Running
First of all, you'll need to install a platform-specific back-end for EPOS to run on. During development,
this is usually a QEMU virtual machine for your target architecture (e.g. qemu-system-i386, qemu-
system-arm). Then, simply type

$ make [APPLICATION=<application>] run

Note: for the EPOSMote III platform, please refer to the EPOSMote III Programming Tutorial.

http://www.qemu.org/
https://epos.lisha.ufsc.br/IoT+with+EPOS#EPOS_EPOSMote_III

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 10

3.2.1. Running on Bare Metal
In principle, there is nothing to be done to run EPOS on a real machine (i.e. without QEMU). Note,
however, that there are many flavors of x86 and ARM CPUs and although EPOS tries not to make use
of non-standard CPU features, it may happen that your real hardware has peculiarities that are not
handled by EPOS. Furthermore, there are lots of buggy devices out there and commercial operating
systems are full of workarounds to avoid igniting (often unrecoverable) problems. This is not true for
EPOS!

3.2.2. Running on Virtualized Host
You can run EPOS on a qemu-kvm to get access to platform features not emulated by QEMU. Intel x86
PMU, for instance, is only available with KVM. However, many other aspects of QEMU differ in this
mode. Check KVM FAQ for details.

3.3. Configuring
Trait classes are EPOS main configuration mechanism. Whenever an application-specific instance of
EPOS is produced (that is, whenever EPOS is built), the builder looks for a file named
$APPLICATION/$APPLICATION_traits.h in the app directory. For instance, if the application's main
file is app/producer_consumer/producer_consumer.cc, then the builder will look for a file named
app/producer_consumer/producer_consumer_traits.h to configure EPOS accordingly.

Detailed information about the Traits of each component in EPOS is given in section 4, but a typical
traits file usually looks like this:

#ifndef __traits_h
#define __traits_h

#include <system/config.h>

__BEGIN_SYS

template<> struct Traits<Build>: public Traits<void>
{
 static const unsigned int MODE = LIBRARY;
 static const unsigned int ARCHITECTURE = IA32;
 static const unsigned int MACHINE = PC;
 static const unsigned int MODEL = Legacy_PC;
 static const unsigned int CPUS = 1;
 static const unsigned int NODES = 1; // (> 1 => NETWORKING)
 static const unsigned int EXPECTED_SIMULATION_TIME = 60; // s (0 => not simulated)
};

// Utilities
template<> struct Traits<Debug>: public Traits<void>
{
 static const bool error = true;
 static const bool warning = true;
 static const bool info = false;

http://www.linux-kvm.org/page/FAQ
https://en.wikipedia.org/wiki/Trait_(computer_programming)
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#EPOS_API

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 11

 static const bool trace = false;
};
...

__END_SYS

#endif
(END)

A set of configuration tokens and default values is kept at include/system/traits.h:

emplate<typename T>
struct Traits
{
 // EPOS software architecture (aka mode)
 enum {LIBRARY, BUILTIN, KERNEL};

 // CPU hardware architectures
 enum {AVR8, H8, ARMv4, ARMv7, ARMv8, IA32, X86_64, SPARCv8, PPC32};

 // Machines
 enum {eMote1, eMote2, STK500, RCX, Cortex, PC, Leon, Virtex};

 // Machine models
 enum {Unique, Legacy_PC, eMote3, LM3S811, Zynq, Realview_PBX, Raspberry_Pi3};

 // Serial display engines
 enum {UART, USB};

 // Life span multipliers
 enum {FOREVER = 0, SECOND = 1, MINUTE = 60, HOUR = 3600, DAY = 86400, WEEK =
604800, MONTH = 2592000, YEAR = 31536000};

 // IP configuration strategies
 enum {STATIC, MAC, INFO, RARP, DHCP};

 // SmartData predictors
 enum :unsigned char {NONE, LVP, DBP};

 // Default traits
 static const bool enabled = true;
 static const bool debugged = true;
 static const bool monitored = false;
 static const bool hysterically_debugged = false;

 typedef LIST<> DEVICES;
 typedef TLIST<> ASPECTS;
};

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 12

Debugging is therefore enabled by default for critical errors. In order to collect execution traces, a
programmer would make:

Traits<Debug>::trace = true

To build for EPOSMote III, they would adjust Traits<Build> like this:

template<> struct Traits<Build>: public Traits<void>
{
 static const unsigned int MODE = LIBRARY;
 static const unsigned int ARCHITECTURE = ARMv7;
 static const unsigned int MACHINE = Cortex;
 static const unsigned int MODEL = eMote3;
 static const unsigned int CPUS = 1;
 static const unsigned int NODES = 1; // (> 1 => NETWORKING)
 static const unsigned int EXPECTED_SIMULATION_TIME = 0; // s (0 => not simulated)
};

Note: From EPOS 2.0, makefile customizations are no longer needed. Makefiles now parse the
application's traits to adjust themselves and produce a proper instance of EPOS.
Note: EPOS makefiles care for cleaning the configuration between any two builds, but if you change
an application's traits, this will not be perceived as a different build. In this case, issue a make
veryclean to clean up internal configuration info.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 13

4. EPOS API
EPOS programming API is defined around a set of reusable components that are modeled and
implemented following the ADESD methodology. Whenever possible, components implement
constructs that are well-established in the OS community, so you can usually refer to the classic
systems literature to understand EPOS components. Software components, also called abstractions,
are platform-independent and are encapsulated as C++ classes. Platform-specific elements are
encapsulated as Hardware Mediators, which are functionally equivalent to device drivers in Unix, but
do not build a traditional HAL. Instead, they sustain the interface contract between abstractions and
hardware components by means of static metaprogramming techniques. Mediators get dissolved or
embedded into abstractions at compile-time. EPOS also offers common data structures, such as lists,
vectors, and hash tables, through a set of utility classes.

4.1. Memory Management
Most embedded applications won't require programmers to directly manage memory. When EPOS is
in LIBRARY mode, which implies disabling multitasking support (multithreading and multicore are still
allowed), it automatically arranges for an address space for the (single) application with code and
data segments. The data segment is adjusted to incorporate all the memory available in the system
and a heap is created to export that memory to programmers. In this way, programmers can simply
allocate and release memory using the corresponding C++ operators.

Nonetheless, EPOS provides a comprehensive set of memory abstractions, including Address Spaces
(for multitasking environments, in which each Task has its own address space), adjustable memory
Segments, DMA Buffers, and support to dedicated memory devices, such as Scratchpad and
Flash.

4.1.1. Dynamic Memory (Heap)
Dynamic memory allocation is supported in EPOS through the ordinary C++ operators new and
delete. The default algorithm implemented by EPOS is the Buddy Allocator. Some examples of
memory allocation and release in EPOS are depicted bellow. All valid C++ heap operations are also
valid EPOS memory allocation operations.

Examples

Thread * thread = new Thread(&function);
Mutex * mutex = new Mutex;

int ** matrix = new int*[ROWS];
for(int i = 0; i < ROWS; ++i)
 matrix[i] = new int[COLUMNS];

for(int i = 0; i < ROWS; ++i)
 delete [] matrix[i];
delete [] matrix;

delete mutex;
delete thread;

https://epos.lisha.ufsc.br/dl2
https://en.wikipedia.org/wiki/Buddy_memory_allocation

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 14

As mentioned before, the Heap in non-multitasking configurations contains all the memory available
to applications in the machine. For multitasking or explicit multiheap configurations, the default size
of a Heap is defined by a machine trait: Traits<Application>::HEAP_SIZE.

Note: Most application traits reuse architecture and machine traits simply by including default values
from system files, so the trait mentioned here might be a forward to another trait, in this case
Traits<Machine>::HEAP_SIZE in include/machine/MACHINE_NAME/MODEL_NAME_traits.h.

Note: Differently from UNIX, EPOS does not automatically extend the Heap in multitasking
configurations when it is depleted. This an unusual situation in an embedded system. However,
programmers can explicitly resize the data segment and feed the Heap with additional memory by
invoking Heap::free().

4.1.2. Stacks
Each Thread in EPOS has its own stack, which is allocated from the Heap during instantiation. The
default size for such stacks is carefully defined for each combination of architecture and machine
through the Traits<Application>::STACK_SIZE trait. A Thread can also have the size of its Stack
defined at creation time.

Note: Most application traits reuse architecture and machine traits simply by including default values
from system files, so the trait mentioned here might be a forward to another trait, in this case
Traits<Machine>::STACK_SIZE in include/machine/MACHINE_NAME/MODEL_NAME_traits.h.
The figure below shows an example that exposes the relationship mentioned above.

4.1.3. Memory Segments
Memory segments are chunks of allocated memory ready to be used by applications. In order to be
actually used by applications, a Segment must be attached to an Address Space. Per-se, it is only an
allocation unit.

This abstraction is of little use for single-task configurations using the LIBRARY mode, since all the
memory available in the machine is injected into the Heap at initialization time. However, for other
configurations, or for Segments designating I/O regions, it delivers a high-level interface for both main
memory and I/O devices. A Segment can be mapped to any (large enough) slot in an Address Space.
It can also be dynamically grown or shrank. Resize operations, however, will fail if the Segment is
created with the CT flag (contiguous) and there are no adjacent slots to fulfill the request.

Header
include/memory.h

Interface

class Segment
{
public:
 typedef MMU::Flags Flags;
 typedef CPU::Phy_Addr Phy_Addr;

public:

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Segments
https://epos.lisha.ufsc.br/EPOS+2+Developer+Guide#Thread

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 15

 Segment(unsigned int bytes, Flags flags = Flags::APP);
 Segment(Phy_Addr phy_addr, unsigned int bytes, Flags flags);
 ~Segment();

 unsigned int size() const;
 Phy_Addr phy_address() const;
 int resize(int amount);
};

Methods

Segment(unsigned int bytes, Flags flags = Flags::APP)
Creates a memory segment of bytes bytes. Meaningful flags are:

RW: read-write (read-only if absent)
CWT: cache write-through (write-back if absent)
CD: cache disable (cached if absent)
CT: contiguous (scattered if absent)
APP: application default flags (to be always ORed)

Note: this method can cause the fatal error Out of Memory in case the allocation goes beyond
the system's capability.

Segment(Phy_Addr phy_addr, unsigned int bytes, Flags flags)
Encapsulates a memory region of bytes bytes starting at phy_addr as a Segment that can be
attached to an Address Space. This constructor does not allocate memory. It simply maps a
preexisting memory region as a Segment. In addition to the flags described above, this
constructor can take:

IO: memory-mapped I/O (main memory if absent)

~Segment()
Destroys a segment, releasing the associated memory (unless the segment was created with
IO, case in which only the corresponding page tables are released).

unsigned int size() const
Returns the current size of a Segment.

Phy_Addr phy_address() const
Returns the physical address of the contiguous Segment (i.e. a Segment created with CT).
Requesting the physical address of a scattered segment is invalid and returns
Phy_Addr(false).

int resize(int amount)
Grows or shrinks a Segment by amount bytes. A contiguous Segment (i.e. a Segment created
with CT) can only be expanded using adjacent memory blocks.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 16

Note: this method can cause the fatal error Out of Memory in case the allocation goes beyond
the system's capability.

Examples

// With MULTITASKING ENABLED

// Creates a Segment of 400K (that can be shared with other processes):
Segment shared * = new Segment(400*1024);
Task::self()->address_space()->attach(shared);

// Resizes the Data Segment by 1M:
Task::self()->data_segment()->resize(1024*1024);

// Independently of MULTITASKING being enabled or not

// Maps a PCI device's memory region so I can also be accessed from de CPU
PCI::Locator loc = PCI::scan(VENDOR_ID, DEVICE_ID, UNIT);
PCI::Header hdr;
PCI::header(loc, &hdr);
Segment * io_mem;
if(hdr)
 io_mem = new Segment(hdr.region[MEM].phy_addr, hdr.region[MEM].size, Flags::CD);
else
 io_mem = 0;

// Creates a 16 K Segment that can be shared with and I/O device for DMA operations
Segment * dma_mem = new Segment(16*1024, Flags::CT);
Phy_Addr dma_addr = dma_mem->phy_address();

4.1.4. Address Spaces
An Address Space abstracts the range of CPU addresses valid for a given Process. Segments must be
attached to an Address Space in order to be accessed. Each Task has its own Address Space.

For single-task configurations using the LIBRARY mode, a virtual Task is created during system
initialization. Explicitly accessing this Address Space is rather unconventional, but it can be accessed
like this:

Address_Space * as = new Address_Space(MMU::current());

For multitasking configuration, the current Address Space can be obtained with:

Address_Space * as = Task::self()->address_space();

Header
include/memory.h

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 17

Interface

class Address_Space
{
public:
 Address_Space();
 Address_Space(MMU::Page_Directory * pd);
 ~Address_Space();

 using MMU::Directory::pd;

 Log_Addr attach(Segment * seg);
 Log_Addr attach(Segment * seg, const Log_Addr & addr);
 void detach(Segment * seg);
 void detach(Segment * seg, const Log_Addr & addr);

 Phy_Addr physical(const Log_Addr & address);
};

Methods

Address_Space()
Creates an Address Space, usually for a new Task.

Address_Space(MMU::Page_Directory * pd)
Returns a reference to an Address Space using pd as the primary page table.

~Address_Space()
Destroys an Address Space

~MMU::Page_Directory * pd()
Returns the current primary page table (called page directory by Intel).

Log_Addr attach(Segment * seg)
Attaches the Segment designated by seg at the first available address. If the target Address
Space does not feature any slot large enough to contain the Segment, then Log_Addr(false)
is returned.

Log_Addr attach(Segment * seg, const Log_Addr & addr)
Attaches the Segment designated by seg at address addr. If the target address is already
mapped, the Log_Addr(false) is returned.

void detach(Segment * seg)
Detaches the Segment designated by seg from the Address Space. Detaching a Segment that
has not been previously attached might be a harmful operation in some architectures.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 18

void detach(Segment * seg, const Log_Addr & addr)
Detaches the Segment designated by seg from addr at the Address Space. Detaching a
Segment that has not been previously attached or detaching it from a different address might
be a harmful operation in some architectures.

Phy_Addr physical(const Log_Addr & addr)
Returns the physical address currently bound to addr in the Address Space.

Examples

// Creates a Segment of 400K and attaches it to the Address Space:
Segment shared * = new Segment(400*1024);

// With MULTITASKING ENABLED
Task::self()->address_space()->attach(shared);

// With MULTITASKING DISABLED
Address_Space(MMU::current()).attach(shared);

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 19

4.2. Process Management
In EPOS, process management is accomplished by three components: Task, Thread, and Scheduler.
They were designed and implemented to match the corresponding concepts described in the classic
systems literature. The isolation of scheduling policies from the implementation of processes defines
an elegant framework for future developments. This design is discussed in depth in this paper.

4.2.1. Task
If a process is a program in execution, then a Task is the static portion of that process, encompassing
its code and data segments, while a Thread abstracts its dynamic aspects, featuring a private context
and stack. A Thread is thus said to run on a Task. Each Task has its own Address Space. Segments
can be attached to any Address Space and thus can be shared among Tasks. Threads are handled
independently of belonging to the same Task or to different ones.

Note: for single-task configurations using the LIBRARY mode, a virtual Task is created during system
initialization. Explicitly accessing this Task is rather unconventional, but it can be done using the
Task::self() method.

Header
include/process.h

Interface

class Task
{
 template<typename ... Tn>
 Task(Segment * cs, Segment * ds, int (* entry)(Tn ...), Tn ... an);
 template<typename ... Tn>
 Task(const Thread::Configuration & conf, Segment * cs, Segment * ds,
 int (* entry)(Tn ...), Tn ... an);
 ~Task();

 Address_Space * address_space();

 Segment * code_segment();
 Segment * data_segment();

 Log_Addr code();
 Log_Addr data();

 Thread * main();

 static Task * volatile self();
}

Methods

template<typename ... Tn>
Task(Segment * cs, Segment * ds, int (* entry)(Tn ...), Tn ... an)
Creates a Process by implicitly creating a Task and a Thread. The Task is created with the code

http://link.springer.com/article/10.1007%2Fs11241-013-9183-3

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 20

Segment given by cs and the data Segment given by ds. Thread is created to run the function
given by entry on the associated Task. The C++ parameter pack is consistently passed to the
Thread following the architecture's call convention (stack, register set, window, etc).

Note: the code Segment is mapped to the new Task's Address Space in accordance with the
memory model in place (defined in the application's Traits), so it is usually possible to assume
entry is a valid address within the code Segment. Nevertheless, this is an assumption for the
method and programmers are to ensure it for any exotic scenario.

template<typename ... Tn>
Task(const Thread::Configuration & conf, Segment * cs, Segment * ds, int (*
entry)(Tn ...), Tn ... an)
This constructor is similar the the previous, but takes an addition Configuration pack (see
Thread for details).

~Task()
Destroys a Task and consequently deletes (i.e. kills) all its Threads.

Address_Space * address_space()
Returns the Task's Address Space.

Segment * code_segment()
Returns the Task's code Segment.

Segment * data_segment()
Returns the Task's data Segment.

Log_Addr code()
Returns the address the Task's code Segment is mapped to in its Address Space.

Log_Addr data()
Returns the address the Task's data Segment is mapped to in its Address Space.

Thread * main()
Returns the address of the function used to create the Task's first Thread (usually the function
main()).

static Task * volatile self()
Returns a reference to the running Task.

Examples

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Thread

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 21

// Create a new Task and its initial Thread from an ELF object
ELF * elf = ... ;

Address_Space * as = Task::self()->address_space();

// Create and load the CODE segment
Segment * cs = new Segment(elf->segment_size(0));
CPU::Log_Addr code = as->attach(cs);
if(elf->load_segment(0, code) < 0) {
 cerr << "Application code segment is corrupted!" << endl;
 return;
}
as->detach(cs);

// Create and load the DATA segment with room for a Heap
Segment * ds = new Segment(elf->segment_size(1) + S::Traits<Application>::HEAP_SIZE);
CPU::Log_Addr data = as->attach(ds);
if(elf->load_segment(1, data) < 0) {
 cerr << "Application data segment is corrupted!" << endl;
 return;
}
as->detach(ds);

// Create the Task
int (* entry)() = CPU::Log_Addr(elf->entry());
Task * task = new Task(cs, ds, entry);

// Wait for it to finish
task->main()->join();

4.2.2. Thread
If a process is a program in execution, then a Thread encompasses its dynamic aspects. A Thread has
a private context and a private stack. It runs a Task's code and manipulates its data.

Header
include/process.h

Interface

class Thread
{
public:
 enum State {
 RUNNING,
 READY,
 SUSPENDED,
 WAITING,
 FINISHING
 };

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 22

 typedef Scheduling_Criteria::Priority Priority;
 typedef Traits<Thread>::Criterion Criterion;
 enum {
 HIGH = Criterion::HIGH,
 NORMAL = Criterion::NORMAL,
 LOW = Criterion::LOW,
 MAIN = Criterion::MAIN,
 IDLE = Criterion::IDLE
 };

 struct Configuration {
 State state;
 Criterion criterion;
 Task * task;
 unsigned int stack_size;
 };

 template<typename ... Tn>
 Thread(int (* entry)(Tn ...), Tn ... an);
 template<typename ... Tn>
 Thread(const Configuration & conf, int (* entry)(Tn ...), Tn ... an);
 ~Thread();

 const volatile State & state();

 const volatile Priority & priority();
 void priority(const Priority & p);

 Task * task();

 int join();
 void pass();
 void suspend();
 void resume();

 static Thread * volatile self();
 static void yield();
 static void exit(int status = 0);
}

Types

State
Defines the states a Thread can assume.

RUNNING: the Thread is running on a CPU.
READY: the Thread is ready to be executed, but there are no available CPUs at the
moment.
SUSPENDED: the Thread is suspended and therefore it is not eligible to be scheduled.
WAITING: the Thread is blocked waiting for a resource (e.g. Semaphore, Communicator,
File).

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 23

FINISHING: the Thread called exit and its state is being held for an eventual join().

Priority
Defines an integer representation for the priorities that a Thread can assume.

Criterion
Defines the priorities a Thread can assume. It is usually an import of a type defined in the
Scheduling_Criteria namespace. It is used by EPOS as the ordering criterion for all
scheduling decisions. Many priorities can have symbolic representations. The following are the
most typical ones:

HIGH: the highest priority a user-level Thread can have.
LOW: the lowest priority a user-level Thread can have.
NORMAL: the priority assigned to Threads by default.
MAIN: the priority assigned to the first Thread of a Task (usually running the main()
function). It is often an alias for NORMAL.
IDLE: the Idle Thread priority (usually LOW - 1).

Configuration
This type is used to define a configuration pack for Threads. The following parameters can be
adjusted:

state: designates the Thread's initial state. READY is the default. SUSPENDED can be used
to prevent scheduling after creation. A Thread created as SUSPENDED must be explicitly
activated with resume().
criterion: designates the Thread's initial priority. NORMAL is the default. Any value
between LOW and MAX, or any Criterion mapping to that interval is valid.
task: can be (rarely) used to create a Thread over another Task. Default is to create a
Thread on the currently running Task.
stack_size: designates the size in bytes of Thread's Stack. The default is
Traits<Application>::STACK_SIZE.

Methods

template<typename ... Tn>
Thread(int (* entry)(Tn ...), Tn ... an)
Creates a Thread on the running Task to run the function given by entry. The C++ parameter
pack is consistently passed to the Thread following the architecture's call convention (stack,
register set, window, etc).

template<typename ... Tn>
Thread(const Configuration & conf, int (* entry)(Tn ...), Tn ... an)
Creates a Thread on the running Task to run the function given by entry. The Thread's creation
is controlled by conf (see the Configuration type declaration above). The remainder of the
C++ parameter pack is consistently passed to the Thread following the architecture's call

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 24

convention (stack, register set, window, etc).

~Thread()
Destroys a Thread (respecting the corresponding C++ object's semantics; e.g. the destructor
does not delete the object).

const volatile State & state()
Returns the Thread's current state.

const volatile Priority & priority()
Returns the Thread's current priority (i.e. an integer representing the ordering imposed by the
Criterion in place).

void priority(const Priority & p)
Adjusts the Thread's priority according to the Criterion in place.

Task * task()
Returns the Task this Thread is running on.

int join()
Waits for this Thread to finish and returns the value passed over at return (or exit()).

Note: the int return type is defined by the C++ standard as the only one valid for the main()
function and therefore requires EPOS to follow it. POSIX further limits the interpretation of that
integer to 8 bits. EPOS would prefer to abolish it if there were a void main() valid signature.
Programmers can define their own semantics for the integer in EPOS.

void pass()
Hands the CPU over to this Thread. This function can be used to implement user-level
schedulers. A Thread can be created with a higher priority to act as the scheduler. EPOS
scheduler will always elect it, but it can in turn pass() the CPU to another Thread. Accounting is
done for the Thread receiving the CPU, but timed scheduling criteria are not reset. In this way,
the calling Thread is charged only for the time it took to hand the CPU over to another Thread,
which inherits the CPU without further intervention from EPOS' scheduler.

void suspend()
Suspends the execution of this Thread. The Thread's state is set to SUSPENDED and it will not be
eligible for scheduling until resume() is called. If called for the running Thread, this method
triggers a rescheduling.

void resume()

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 25

Resumes the execution of this Thread by setting its state to READY and notifying the Scheduler.
Whether or not this notification will trigger a reschedule is Criterion dependent. Resuming a
Thread that is not suspended is an invalid operation, even if for most policies this would have
no effects.

static Thread * volatile self()
Returns a reference to the running Thread (actually, a volatile reference to a pointer
designating it).

static void yield()
Yields the CPU by triggering a reschedule operation the excludes the running Thread from the
election. If the scheduler can find another Thread to take over the CPU, then the calling
Thread's state is set to READY and that Thread is put to run. Since the Thread yielding the CPU
is in READY state it can be rescheduled at any subsequent time.

static void exit(int status = 0)
Causes the termination of the calling Thread, which has its state set to FINISHING. The
Thread's context is preserved for an eventual join() operation (until the corresponding C++
object is deleted). If there is already a pending join() at the time exit() is called, then the
waiting Thread is reactivated (i.e. its state is set to READY and the scheduler is notified). This
method always triggers a reschedule.

Examples

Complete me!

4.2.3. RT_Thread
The Real-time Thread abstraction is an specialization of Thread designed to handle a variety of
scenarios in the realm or Periodic Real-time Scheduling.

Header
include/real-time.h

Interface

class RT_Thread
{
public:
 enum {
 SAME = Scheduling_Criteria::RT_Common::SAME,
 NOW = Scheduling_Criteria::RT_Common::NOW,
 UNKNOWN = Scheduling_Criteria::RT_Common::UNKNOWN,
 ANY = Scheduling_Criteria::RT_Common::ANY
 };

public:

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 26

 RT_Thread(void (* function)(),
 const Microsecond & deadline,
 const Microsecond & period = SAME,
 const Microsecond & capacity = UNKNOWN,
 const Microsecond & activation = NOW,
 int times = INFINITE,
 int cpu = ANY,
 unsigned int stack_size = STACK_SIZE);
}

Methods

RT_Thread(void (* function)(), const Microsecond & deadline, const Microsecond &
period = SAME, const Microsecond & capacity = UNKNOWN, const Microsecond &
activation = NOW, int times = INFINITE, int cpu = ANY, unsigned int stack_size =
STACK_SIZE)
Creates a Periodic Thread on the running Task to run the function given by function. These are
the constructor's parameters:

deadline: the Periodic Thread's deadline in µs.
period: the Periodic Thread's period in µs (a new job is released at every period µs).
SAME makes it equal to the Thread's deadline.
capacity: designates the time each job takes to finish. This is only meaningful for a few
real-time algorithms (i.e. Scheduling Criteria) and is usually given as a Worst-Case
Execution Time estimate for the Thread's jobs. Leave it as UNKNOWN for Criteria that do not
use it.
activation: a time to wait before releasing the Thread's first job (i.e. before activating
it).
times: periodic threads usually run forever and have this parameter passed as INFINITE.
You can restrict the number of job releases with this parameter.
cpu: some multicore Scheduling Criteria allows programmers to specify the first CPU the
Thread will run on. Some of them, the partitioned ones, will even restrict the execution of
subsequent Thread's jobs to that CPU.
stack_size: designates the size in bytes of Thread's Stack. The default is
Traits<Application>::STACK_SIZE.

Examples

Complete me!

4.2.4. Scheduler
EPOS provides a family of schedulers that covers a large variety of scenarios, from ordinary time-
sharing algorithms to sophisticated real-time, energy-aware multicore ones. EPOS Scheduler can be
instantiated multiple times to schedule different classes of resources, such as disks and networks, but
each resource class has a single scheduler. In order to select the Thread Scheduler (or CPU Scheduler,
depending on your perspective) simply pick one of them from the Scheduling_Criteria namespace
and edit your application's Traits file to designate it as Traits<Thread>::Criterion.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 27

There are four basic Traits for a Thread Scheduling Criterion: preemptive, timed, dynamic, and
energy-aware:

Preemptive: a Preemptive Criterion requires a reevaluation, and eventually a rescheduling,
whenever a Thread enters the READY state, independently of the previous state (e.g. a newly
created Thread, a Thread released from a Mutex, a Thread that was waiting fro I/O). A non-
preemptive Criterion will only be reevaluated when the RUNNING Thread explicitly causes it
state to change (e.g. by blocking on a Synchronizer or by invoking I/O operations). All timed
Criteria are preemptive. Most priority-based Criteria are also preemptive. Shortest Job First is a
non-Preemptive Criterion.
Timed: a Timed Criterion requires a QUANTUM to be specified (in µs). This constant defines the
maximum time a Thread can run before the Scheduler rechecks the Criterion in place
(eventually scheduling another Thread). The value of Traits<Thread>::QUANTUM must be
carefully chosen: a value of a few µs will cause the system to reevaluate the Criterion too often
and will result in (very) large overhead, eventually bringing the system to thrash; a value of
hundreds of ms will enable CPU-bound threads to monopolize the CPU, eventually degrading the
system responsiveness. Values between 100 µs and 100 ms are common. All timed Criteria are
preemptive. Round-robin is a Timed Criterion.
Dynamic: a Dynamic Criterion is recalculated at run-time to constantly reflect the police in
force. There are two moments at which a Dynamic Criterion can be recalculated: at dispatch
and at release. For Aperiodic Threads, for which no period is defined, it is done when the Thread
leaves the CPU (i.e. another Thread is dispatched). For Periodic Threads, recalculating at
dispatch would not be adequate, since jobs of other Threads will still be released before the
next activation and they may influence on the calculations. Therefore, Periodic Threads
subjected to Dynamic Criteria are reevaluated before the release of each job. Earliest Deadline
First is Dynamic Criterion.
Energy-aware: Criteria with this trait will cause low priority Threads to be suspended whenever
their execution could cause a critical Thread to fail due to the lack of power. In order to enforce
such a regimen, Energy-aware Criteria require Traits<System>::LIFE_SPAN to be defined. An
energy monitoring mechanism is also enabled in the platforms supporting it.

The following are EPOS standard Scheduling Criteria. Many others exist and implementing yours is not
difficult.

FCFS: First-come, First Served (FIFO)
Priority (Static and Dynamic)
RR: Round-Robin
GRR: Multicore Round-Robin
CPU Affinity (multicore)
[G|P|C]RM: Rate Monotonic (single-core and global, partitioned or clustered multicore)
[G|P|C]DM: Deadline Monotonic (single-core and global, partitioned or clustered multicore)
[G|P|C]EDF: Earliest Deadline First (single-core and global, partitioned or clustered multicore)
[G|P|C]LLF: Least Laxity First (single-core and global, partitioned or clustered multicore)

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 28

4.3. Process Coordination (Synchronizers)
Process coordination in EPOS is realized by the Synchronizer and the Communicator families of
abstractions. The former is described here and the latter in the next section.

Synchronizers are used to coordinate process execution so concurrent (or parallel) Threads can
share resources without corrupting them. avoid race conditions during the execution of parallel
programs. A race condition occurs when a thread accesses a piece of data that is being modified by
another thread, obtaining an intermediate value and potentially corrupting that piece of data.

4.3.1. Semaphore
The Semaphore member of the Synchronizer family realizes a semaphore variable as invented by
Dijkstra. A semaphore variable is an integer variable whose value can only be manipulated indirectly
through the atomic operations p() and -=v()+-.

Note: besides being useful to synchronize critical sections, Semaphores can be also used as atomic
resource counters as in the Producer-consumer problem.

Header
include/synchronizer.h

Interface

class Semaphore
{
public:
 Semaphore(int v = 1);
 ~Semaphore();

 void p();
 void v();
}

Methods

Semaphore(v : int = 1)
Creates a Semaphore, which, by default, is initialized with 1.

~Semaphore()
Destroys a Semaphore, releasing eventual blocked Threads.

p()
Atomically decrements the value of a semaphore. Invoking p() on a semaphore whose value is
less than or equal to zero causes the Thread to wait until the value becomes positive again.

v()
Atomically increments the value of a Semaphore, eventually unblocking a waiting Thread if the

http://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 29

value becomes positive (i.e. making its state READY and notifying the Scheduler).

Examples

Complete me!

4.3.2. Mutex
The Mutex member of the Synchronizer family implements a Binary Semaphore.

Header
include/synchronizer.h

Interface

class Mutex
{
public:
 Mutex();
 ~Mutex();

 void lock();
 void unlock();
}

Methods

Mutex()
Creates a Mutex.

~Mutex()
Destroys a Mutex, releasing eventual blocked Threads.

lock()
Locks a Mutex. Subsequent invocations cause the calling Threads to block.

unlock()
Unlocks a Mutex. When a Thread invokes unlock() on a Mutex for which there are blocked
Threads, the first Thread put to wait is unblocked (by making its state READY and notifying the
Scheduler) and the Mutex is immediately locked (atomically). If no threads are waiting, the
unlock operation has no effect.

Examples

Complete me!

4.3.3. Condition
The Condition member of the Synchronizer family realizes a system abstraction inspired on the
condition variable language concept, which allows a Thread to wait for a predicate on shared data to

https://en.wikipedia.org/wiki/Semaphore_(programming)#Semaphores_vs._mutexes
http://en.wikipedia.org/wiki/Condition_variable#Blocking_condition_variables

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 30

become true. It is often used by programming languages to implement Monitors.

Header
include/synchronizer.h

Interface

class Condition
{
public:
 Condition();
 ~Condition();

 void wait();
 void signal();
 void broadcast();
}

Methods

Condition()
Creates a condition variable.

~Condition()
Destroys a condition variable, releasing eventual blocked Threads.

wait()
Implicitly unlocks the shared data and puts the calling Thread to wait for the assertion of a
predicate. Several threads can be waiting on the same condition. The assertion of a predicate
can be announced either to the first blocked Thread or to all blocked Threads. When a thread
returns from the wait operation, it implicitly regains control over the critical section.

signal()
Announces the assertion of a predicate to the first waiting Thread, releasing it for execution (i.e.
making its state READY and notifying the Scheduler).

broadcast()
Announces the assertion of a predicate to all waiting Threads, making their state READY and
notifying the Scheduler.

Examples

https://en.wikipedia.org/wiki/Monitor

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 31

4.4. Timing
Time management in EPOS encompasses abstractions to measure time intervals, to keep track of the
current time, and also to trigger timed events.

4.4.1. Clock
Clock abstracts a Real-time Clock (RTC) in platforms that feature one. It can be used to get and set
the current time and date.

Header
include/time.h

Interface

class Clock
{
public:
 class Date
 {
 public:
 Date() {}
 Date(unsigned int Y, unsigned int M, unsigned int D,
 unsigned int h, unsigned int m, unsigned int s);
 Date(const Second & seconds, unsigned long epoch_days = 0);

 operator Second();
 Second to_offset(unsigned long epoch_days = 0);

 unsigned int year();
 unsigned int month();
 unsigned int day();
 unsigned int hour();
 unsigned int minute();
 unsigned int second();

 void adjust_year(int y);
 }

public:
 Clock();
 ~Clock();

 Microsecond resolution();

 Second now();

 Date date();
 void date(const Date & d);
}

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 32

Types

Microsecond
An unsigned integer representing µs. Its resolution is adjusted according to
Traits<System>::LIFE_SPAN either to 32 or 64 bits.

Second
An unsigned integer representing seconds. Its resolution is adjusted according to
Traits<System>::LIFE_SPAN either to 32 or 64 bits.

Date
Data structure to store the components of a date: year, month, day, hour, minute, and second;
as unsigned integers. It features methods to convert this representation of data to and from an
offset in seconds from a given epoch

Methods

Clock()
Constructs a Clock.

~Clock()
Destroys a Clock.

Microsecond resolution()
Returns the Clock resolution in µs.

Second now()
Returns the current time in seconds.

Date date()
Returns the current date.

void date(Date & d)
Sets the current date.

Examples

Complete me!

4.4.2. Chronometer
Chronometer abstracts a timepiece able to measure time intervals. Its precision and resolution
depend on the timing devices available in the platform (e.g. real-time clocks, CPU clock counters,
high-performance timers).

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 33

Header
include/time.h

Interface

class Chronometer
{
public:
 Chronometer();
 ~Chronometer();

 Hertz frequency();

 void reset();
 void start();
 void lap();
 void stop();

 Microsecond read();
}

Methods

Chronometer()
Constructs a Chronometer.

~Chronometer()
Destroys a Chronometer.

Hertz frequency()
Returns the Chronometer frequency in Hertz.

void reset()
Resets the Chronometer.

void start()
Starts counting time. It can be used only once for each counting procedure. Subsequent
invocations are ignored (use reset() before using start() again).

void lap()
Takes a snapshot of the current time counting. A read() will return the interval accumulated
for all laps since start(). Time counting continues normally.

void stop()
Stops counting time. A read() will return the interval elapsed since start().

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 34

Microsecond read()
Return the measured time in µs. Before start() the method returns 0. After start() it returns
the time measured between start() and the last lap() or stop().

Examples

Complete me!

4.4.3. Alarm
Alarm abstracts timed events in EPOS. An Alarm uses a hardware timer to trigger high-level timed
events. These events are abstracted by the Handler utility, which declares an interface for
polymorphic objects that implement the call operator void operator()()- (see Handler. An event
Handler can be a function or any other object implementing its interface. For example, a Thread
Handler holds a reference to a Thread and binds the call operator to resume(). A Semaphore Handler
holds a reference to a Semaphore and binds the call operator to v(). In this case, the Handler itself is
Thread synchronized on that Semaphore.

Note: A Sempahore Handler is particularly interesting for it has memory: if an event cannot be
handled in time, it will be stored handled lately (as soon as the first occurrence gets handled and the
scheduler allows). Other Handlers might lose late events.

Header
include/time.h

Interface

class Alarm
{
public:
 Alarm(const Microsecond & time, Handler * handler, int times = 1);
 ~Alarm();

 static Hertz frequency();

 static void delay(const Microsecond & time);
}

Methods

Alarm(const Microsecond & time, Handler *handler, int times = 1)
Creates an Alarm to trigger handler after time µs. The event will occur times times or forever
if INFINITE is given. Handler must be polymorphic and it must implement the call operator (-
+void operator()()+--) for the trigger. See the Handler utility for details.

~Alarm()
Destroys an Alarm;

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Handler
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Handler

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 35

Hertz frequency()
Returns the Alarm's frequency in Hertz.

void delay(const Microsecond & time)
Delays a Thread execution by time µs.

Examples

Complete me!

4.4.4. Delay
Delay is used to delay the execution of Threads by a given, usually small, amount of time.

Header
include/time.h

Interface

class Delay
{
public:
 Delay(const Microsecond & time);
}

Methods

Delay(const Microsecond & time)
Creates a Delay object to delay the execution of the calling Thread by time µs. The object is
implicitly destroyed afterward and there are no methods to act on it meanwhile.

Examples

Complete me!

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 36

4.5. Communication
Communication in EPOS is delegated to the families of abstractions shown in the Figure below.
Application processes communicate with each other using a Communicator, which acts as an end-
point to a communication Channel implemented on a Network interfaced by a Network Interface
Card (NIC). For example, a TCP connection in EPOS is abstracted as a Communicator for a TCP
Channel over an IP Network. Ethernet would be a good candidate for the NIC in this example. Several
other protocols have been designed for EPOS, most of them avoiding the issues imposed by TCP/IP on
embedded systems, especially critical ones and those for IoT. In order to improve usability, EPOS
exports rather different protocols under this same interface, ranging from simple serial ports to TCP/IP
and TSTP.

An overview of EPOS' communication structure is shown below.

4.5.1. Link
Link is a point-to-point Communicator. Links are used in EPOS to abstract serial communication for a
variety of hardware devices, including serial ports such as UART, USART, SPI, and USB. It is also used
to create virtual connections on packet switching networks.

Header
include/communicator.h

Interface

template<typename Protocol>
class Link
{
public:
 typedef typename Protocol::Address Address;
 typedef typename Protocol::Address::Local Local_Address;

public:
 Link(const Local_Address & local, const Address & peer = Address::NULL);
 ~Link();

https://epos.lisha.ufsc.br/dl224?display

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 37

 int read(void * data, unsigned int size);
 int write(const void * data, unsigned int size);

 const Address & peer();
}

Methods

Link(const Local_Address & local, const Address & peer = Address::NULL)
Creates a Link between local and peer. The calling Thread is blocked until a connection with
Peer is established. The local Communicator address is relative to the local host and is given as
a Local_Address, while the Peer's address must be given as fully qualified Address. For some
protocols, it is valid to leave peer undefined (-+Address::NULL+-) thus indicating that the
connection can be established with any Peer. After the connection is established, that address
can be retrieved with peer() (unless the Network itself does not define addresses, such as for a
serial line).

~Link()
Destroys a Link, properly finishing an eventual connection.

int read(void * data, unsigned int size)
Reads size bytes of data from the Link and stores it at data. The calling Thread is blocked until
size bytes are received.

int write(const void * data, unsigned int size)
Writes size bytes of data starting at data into the Link.

const Address & peer()
Returns the Peer's address. Calling the method before a connection has been established
returns Address::NULL.

Examples

Complete me!

4.5.2. Port
Port is a multi-point Communicator for connection-oriented networks. A Thread can listen on a Port for
connection requests from other Threads. Upon connection a Link is returned and both Threads can
exchange data. It is widely used with the Client-Server architecture, with Servers listening on a Port
for Clients' requests.

Header
include/communicator.h

Interface

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Link

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 38

template<typename Protocol>
class Port
{
public:
 typedef typename Protocol::Address Address;
 typedef typename Protocol::Address::Local Local_Address;

public:
 Port(const Local_Address & local);
 ~Port();

 Link<Channel> * listen();
 Link<Channel> * connect(const Address & to);
}

Methods

Port(const Local_Address & local)
Creates a Port with address local to listen on for connection requests. Creating a Port on a
previously assigned Address is invalid for most Protocols.

~Port()
Destroys the Port, releasing the local address and closing eventually open connections (i.e.
Links).

Link<Channel> * listen();
Listens for a connection request. The calling Thread is blocked until a connection can be
established. A Link to the Peer Communicator is returned upon connect.

Link<Channel> * connect(const Address & to)
Connects to a Port at address to. The calling Thread is blocked until a connection can be
established. A Link to the peer is returned upon connecting. If a connection cannot be
established, including because there was already a connection to that address and the
underlying Protocol does not support multiple connections, 0 is returned.

Examples

Complete me!

4.5.3. Mailbox
A Mailbox is a multi-point Communicator for connectionless Protocols. A Thread can receive messages
from a Mailbox and it can also send messages through it to any other Mailbox.

Header
include/communicator.h

Interface

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 39

template<typename Protocol>
class Mailbox
{
public:
 typedef typename Protocol::Address Address;
 typedef typename Protocol::Address::Local Local_Address;

public:
 Mailbox(const Local_Address & local);
 ~Mailbox();

 int send(const Address & to, const void * data, unsigned int size);
 int receive(Address * from, void * data, unsigned int size);
}

Methods

Mailbox(const Local_Address & local)
Creates a Mailbox with address local. The Mailbox can be used both to sent and to receive
messages. Creating a Mailbox on a previously assigned Address is invalid for most Protocols.

~Mailbox()
Destroys the Mailbox, releasing the local address.

int send(const Address & to, const void * data, unsigned int size)
Sends a Message to to containing size bytes of data stored at data. The method returns the
number of bytes effectively sent.

int receive(Address * from, void * data, unsigned int size)
Receives a Message and copies up to size bytes of its data to data. The calling Thread is
blocked until the packet is received. from is updated with the address of the sender. The
number of bytes effectively received (and copied) is returned.

Examples

Complete me!

4.5.4. Channel
Channels in EPOS are used to model communication protocols classified at level four (transport)
according to the OSI model. TCP, UDP, ELP, TSTP are Channels. Implementing a new protocol in EPOS
is easier than in ordinary Unix-like systems, but nevertheless requires programming knowledge
beyond that what could be covered in a User's Guide. Please, refer to our publications for additional
information.

4.5.5. Network
Networks in EPOS are used to model communication protocols classified at level three (network)

https://en.wikipedia.org/wiki/OSI_model
http://www.lisha.ufsc.br/pub/index.php?title=EPOS%20Publications&key=EPOS

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 40

according to the OSI model. IP, ELP, and TSTP are Networks. Implementing a new protocol in EPOS is
easier than in ordinary Unix-like systems, but nevertheless requires programming knowledge beyond
that what could be covered in a User's Guide. Please, refer to our publications for additional
information.

4.5.6. IPC
TODO

4.5.7. TSTP
The Trusful Space-Time Protocol (TSTP) is EPOS' response to Wireless Sensor Network in terms of
protocols. It consolidates over a decade of research on the theme in a cross-layer protocol that
features Semantic Data, Authentication, Encryption, Timing, Location, Convergecast Routing, and an
Energy-Efficient MAC. It is best exposed to users through SmartData.

TSTP comprises the whole network stack, from the application layer to the Medium Access Control
(MAC) layer (the current implementation of TSTP MAC assumes an IEEE 802.15.4 2450MHz DSSS PHY
layer). The figure below shows a configuration of EPOS' network stack for TSTP@EPOSMoteIII with a
single NIC.

TSTP is a geographic protocol, and every node in the network is synchronized in space and time,
which means that every node has spatial coordinates and a synchronized clock. A TSTP network
consists of one sink node and any number of sensor nodes. The sink is the reference for clock
synchronization and spatial localization.

The main TSTP subcomponents are Router, Locator, Timekeeper, Security Manager, and MAC.
Each one is responsible for different aspects of TSTP's functionality, and the design of each one can
be intimately connected to another component.

https://en.wikipedia.org/wiki/OSI_model
http://www.lisha.ufsc.br/pub/index.php?title=EPOS%20Publications&key=EPOS
https://en.wikipedia.org/wiki/Wireless_sensor_network
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/dl225?display

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 41

4.5.7.1. Configuration

To enable TSTP, you need to set TSTP as a network for a NIC, as in the example below (see also
Configuring Networking).

template<> struct Traits<Network>: public Traits<Build>
{
 typedef LIST<TSTP> NETWORKS;

 static const unsigned int RETRIES = 3;
 static const unsigned int TIMEOUT = 10; // s

 static const bool enabled = (Traits<Build>::NODES > 1) && (NETWORKS::Length > 0);
};

TSTP allows for pre-definition of coordinates for static nodes. You can define the coordinates of the
node in src/component/tstp_init.cc, at the Locator::bootstrap() method, by setting the _here
variable: _here = Coordinates(10,10,10);.

To deploy a sink node, set its coordinates to (0,0,0) inside Locator::bootstap();. Any node which is
not at (0,0,0) will act as a sensor node located in the given coordinates.

4.5.7.2. Bootstrap

Before calling your application's main(), TSTP components need to bootstrap. This is done during
TSTP's initialization (TSTP::init() at src/component/tstp_init.cc), by calling the bootstrap()
method of each component. The Locator sets the initial coordinates for the node; the Timekeeper
synchronizes the clock with the network; The Security Manager establishes a shared cryptographic
key with the sink.

Note: the main() method of a sensor node's application will not be executed until
bootstrap is complete. You need a running TSTP sink to be able to run an application on a
TSTP sensor!

4.5.7.3. Interaction between components

The present tightly-coupled cross-layered design does not imply in a monolithic software
implementation. To make component interaction efficient and uncoupled, three strategies are used:
Zero-copy Buffer Management, Metadata Gathering, and Event Propagation.

4.5.7.3.1. Zero-copy Buffer Management

Zero-copy is a mechanism that implements efficient message passing and it consists on transferring
the ownership of pointers to data buffers from one component to another.
As only pointers are transferred, it avoids copying data between components (such as layers of a
layered protocol stack), thus achieving better efficiency.

TSTP uses EPOS' Zero-Copy Buffer utility to share messages between components, NIC, and
application.

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Buffer_Zero-Copy_

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 42

4.5.7.3.2. Metadata Gathering

To allow network components to share information that goes beyond the message's header (e.g.
precise time of arrival), we enrich each buffer with metadata, which is visible to every component but
not transmitted through the network. Upon reception of a message, each component must populate
and adjust specific portions of the metadata. Because the order of buffer processing and which
component is responsible for which piece of metadata are well-defined, each component knows what
metadata it can use for its own purposes. For example, the MAC component inserts the values of RSSI
and precise SFD time stamp read from the radio hardware. The buffer (holding the message and the
metadata) is passed to the Locator, which uses the RSSI to update its position estimation. The buffer
is then passed to the Timekeeper, which potentially uses the SFD time stamp to synchronize the
node's clock with the sender of that message. This way, the Timekeeper and Locator implementations
are hardware-independent (reading the radio's registers is the role of the MAC), and indeed
independent on the implementation of any other component, as long as the necessary metadata is
populated in each network buffer at the right time.

The metadata available at TSTP buffers is defined in include/nic.h:

// Buffer Metadata added to frames by higher-level protocols
struct Metadata
{
 int rssi; // Received Signal Strength Indicator
 unsigned long long sfd_time_stamp; // Start-of-frame reception time stamp
 unsigned int id; // Message identifier
 unsigned long long offset; // MAC contention offset
 bool destined_to_me; // Whether this node is the final destination
for this message
 bool downlink; // Message direction (downlink == from sink to
sensor)
 unsigned long long deadline; // Time until when this message must arrive at
the final destination
 unsigned int my_distance; // This node's distance to the message's final
destination
 unsigned int sender_distance; // Last hop's distance to the message's final
destination
 bool is_new; // Whether this message was just created by
this node
 bool is_microframe; // Whether this message is a Microframe
 bool relevant; // Whether any component is interested in this
message
 bool trusted; // If true, this message was successfully
verified by the Security Manager
 bool freed; // If true, the MAC will not free this buffer
 unsigned int attempts; // Number times the MAC tried to transmit this
buffer
 unsigned int microframe_count; // Number of Microframes left until data
 };

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 43

4.5.7.3.3. Event Propagation

Buffers are propagated to components using the publisher/subscriber design pattern, in which the
upper layers are observers (subscribers) of the lower layers (publishers).
Components observe the NIC by calling the attach() method. When a message is received by the
NIC, it notifies any observers attached to it in the order they were attached, by calling the respective -
+update()-+ method, passing a reference to the buffer containing the message (including all the
headers) and metadata. The last component to be notified is the one responsible for the API, which
delivers the message to the application (usually a SmartData object) if necessary.

4.5.7.4. Coordinates

On TSTP, the coordinate is relative to the Sink. The sink node is capable to convert this coordinate to
another coordinate system. For example, if you want to convert the coordinate to the system relative
to Earth's mass center (ECEF), you need to convert the Sink's position from traditional coordinate
system to ECEF. We recommend you to follow this steps:

1. Access this site. Put a reference name of your location and adjust the position of the marker. Copy
the lat/lng/alt of the Sink's location for the next step.

2. Now, you need access this site. Paste the lat/lng/alt in the respective fields. Click on the button
"LLH to ECEF". Done, you will get the position relative to the Earth's mass center. Note that for being
used with the TSTP you must convert from km to cm.

4.5.8. TCP/IP
TCP/IP is the standard stack of protocols for communication on the Internet. EPOS implements the
protocol stack as specified in the RFCs. Some embedded optimizations described elsewhere are not
included in OpenEPOS and therefore this version is fully interoperable with other systems.

4.5.8.1. ARP

The Address Resolution Protocol (ARP) is implemented in EPOS following RFC 826 for Ethernet and
likewise for other network technologies. It is implicitly enabled for each NIC for which IP is enabled
and there is no user-visible configuration.

4.5.8.2. DHCP

The Dynamic Host Configuration Protocol (DHCP) is implemented in EPOS following RFC 2131. Since it
depends on UDP, IP must be initialized first for any NIC using DHCP. See Configuring Networking for
details.

4.5.8.3. IP

The Internet Protocol version 4 (IPv4) is implemented in EPOS following RFC 791. An IP Communicator
is not defined in EPOS, so applications should not directly use it. For testing and new protocol
development, direct IP access can be gained through ICMP. In order to enable IP for a given NIC, list it
as the chosen protocol in the applicaiton's Traits. See Configuring Networking for details.

4.5.8.4. ICMP

The Internet Control Message Protocol (ICMP) is implemented in EPOS following RFC 792. An ICMP
Communicator is defined in EPOS as Mailbox<ICMP>. See Mailbox above for the general interface.

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
http://www.mapcoordinates.net/en
https://www.oc.nps.edu/oc2902w/coord/llhxyz.htm
https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc2131
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking
https://tools.ietf.org/html/rfc791
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking
https://tools.ietf.org/html/rfc792
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Mailbox

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 44

Messages for this Mailbox are ICMP packets specified in the RFC and described bellow.

Header
include/icmp.h

Interface

class ICMP
{
public:
 // ICMP Packet Types
 typedef unsigned char Type;
 enum {
 ECHO_REPLY = 0,
 UNREACHABLE = 3,
 SOURCE_QUENCH = 4,
 REDIRECT = 5,
 ALTERNATE_ADDRESS = 6,
 ECHO = 8,
 ROUTER_ADVERT = 9,
 ROUTER_SOLIC = 10,
 TIME_EXCEEDED = 11,
 PARAMETER_PROBLEM = 12,
 TIMESTAMP = 13,
 TIMESTAMP_REPLY = 14,
 INFO_REQUEST = 15,
 INFO_REPLY = 16,
 ADDRESS_MASK_REQ = 17,
 ADDRESS_MASK_REP = 18,
 TRACEROUTE = 30,
 DGRAM_ERROR = 31,
 MOBILE_HOST_REDIR = 32,
 IPv6_WHERE_ARE_YOU = 33,
 IPv6_I_AM_HERE = 34,
 MOBILE_REG_REQ = 35,
 MOBILE_REG_REP = 36,
 DOMAIN_NAME_REQ = 37,
 DOMAIN_NAME_REP = 38,
 SKIP = 39
 };

 // ICMP Packet Codes
 typedef unsigned char Code;
 enum {
 NETWORK_UNREACHABLE = 0,
 HOST_UNREACHABLE = 1,
 PROTOCOL_UNREACHABLE = 2,
 PORT_UNREACHABLE = 3,
 FRAGMENTATION_NEEDED = 4,
 ROUTE_FAILED = 5,
 NETWORK_UNKNOWN = 6,

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 45

 HOST_UNKNOWN = 7,
 HOST_ISOLATED = 8,
 NETWORK_PROHIBITED = 9,
 HOST_PROHIBITED = 10,
 NETWORK_TOS_UNREACH = 11,
 HOST_TOS_UNREACH = 12,
 ADMIN_PROHIBITED = 13,
 PRECEDENCE_VIOLATION = 14,
 PRECEDENCE_CUTOFF = 15
 };

 class Address: public IP::Address;

 struct Header
 {
 unsigned char _type;
 unsigned char _code;
 unsigned short _checksum;
 unsigned short _id;
 unsigned short _sequence;
 } __attribute__((packed));

 // ICMP Packet
 static const unsigned int MTU = 56;
 static const unsigned int HEADERS_SIZE = sizeof(IP::Header) +
 sizeof(Header);

 typedef unsigned char Data[MTU];

 class Packet: public Header
 {
 public:
 Packet();
 Packet(const Type & type, const Code & code);
 Packet(const Type & type, const Code & code,
 unsigned short id, unsigned short seq);

 Header * header();

 template<typename T>
 T * data();

 void sum();
 bool check();

 private:
 Data _data;
 } __attribute__((packed));

 typedef Packet PDU;

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 46

}

Examples

4.5.8.5. UDP

The User Datagram Protocol (UDP) is implemented in EPOS following RFC 768. An UDP Communicator
is defined in EPOS as Mailbox<UDP>. See Mailbox above for the general interface. Messages for this
Mailbox are UDP datagrams specified in the RFC and fully abstracted by EPOS. The interface is
therefore that of any Mailbox.
Examples

4.5.8.6. TCP

The Transmission Control Protocol (TCP) is implemented in EPOS following RFC 793. A TCP
Communicator is defined in EPOS as Port<TCP>, which upon each connection yields a Link<TPC>.
See Communicator above for the general interfaces. Packet for this Mailbox are TCP segments
specified in the RFC and fully abstracted by EPOS. The interfaces are therefore those of Port and Link.
Examples

4.5.9. Networking Configuration
Enabling networking in EPOS is easy. You just have to set Traits<Build>::NODES to a value larger
than one. The following configuration snippet sets up a PC with 3 NICs, 2 x PCNet32 and 1 x RTL8139,
enables IP for all of them and defines a MAC-based IP selection for the first, STATIC for the second,
and DCHP for the third.
Configuration

template<> struct Traits<Ethernet>: public Traits<Machine_Common>
{
 typedef LIST<PCNet32, PCNet32, RTL8139> DEVICES;
 static const unsigned int UNITS = DEVICES::Length;

 static const bool enabled = (Traits<Build>::NODES > 1) && (UNITS > 0);
};

template<> struct Traits<Build>
{
 static const unsigned int NODES = 100;
};

template<> struct Traits<Network>: public Traits<Build>
{
 typedef LIST<IP, IP, IP> NETWORKS;

 static const unsigned int RETRIES = 3;
 static const unsigned int TIMEOUT = 10; // s

 static const bool enabled = (Traits<Build>::NODES > 1) && (NETWORKS::Length > 0);

https://tools.ietf.org/html/rfc768
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Mailbox
https://tools.ietf.org/html/rfc793
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Communication

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 47

};

template<> struct Traits<IP>: public Traits<Network>
{
 typedef Ethernet NIC_Family;
 static constexpr unsigned int NICS[] = {0, 1, 2};
 static const unsigned int UNITS = COUNTOF(NICS);

 struct Default_Config {
 static const unsigned int TYPE = DHCP;
 static const unsigned long ADDRESS = 0;
 static const unsigned long NETMASK = 0;
 static const unsigned long GATEWAY = 0;
 };

 template<unsigned int UNIT>
 struct Config: public Default_Config {};

 static const unsigned int TTL = 0x40; // Time-to-live

 static const bool enabled = Traits<Network>::enabled &&
(NETWORKS::Count<IP>::Result > 0);
};

template<> struct Traits<IP>::Config<0>
{
 static const unsigned int TYPE = MAC;
 static const unsigned long ADDRESS = 0x0a000100; // 10.0.1.x x=MAC[5]
 static const unsigned long NETMASK = 0xffffff00; // 255.255.255.0
 static const unsigned long GATEWAY = 0; // 10.0.1.1
};

template<> struct Traits<IP>::Config<1>
{
 static const unsigned int TYPE = STATIC;
 static const unsigned long ADDRESS = 0x0a000110; // 10.0.1.16
 static const unsigned long NETMASK = 0xffffff00; // 255.255.255.0
 static const unsigned long GATEWAY = 0; // 10.0.1.1
};

template<> struct Traits<IP>::Config<2>
{
 static const unsigned int TYPE = DHCP;
 static const unsigned long ADDRESS = 0;
 static const unsigned long NETMASK = 0;
 static const unsigned long GATEWAY = 0;
};

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 48

4.6. Sensing and Actuation (Wireless Sensor Network)
Wireless Sensor Network (WSN) has been a very hot topic of research for EPOS. This family of
abstractions consolidates over a decade of research behind a simple, easy-to-use, application-
oriented API. Sensors and Actuators are both abstracted to users through a novel, data-centric
construct we named SmartData.

4.6.1. SmartData
SmartData encapsulates a large set of recurring design patterns in the realm of WSN behind a
powerful, application-oriented interface. A SmartData "observes" a TSTP network and a Transducer (a
sensor or an actuator) and interfaces them in a data-centric way. Programmers interact with it just
like they would with an ordinary piece of Data coming either from the network or from a (potentially
remote) transducer. A SmartData can be of two kinds: a Physical Quantity identified through the
corresponding SI (derived) Unit, or a piece of Digital data. The first is used for most sensors (and
related actuators) that we call a "meter": accelerometer, magnetometer, thermometer, voltmeter,
amperimeter, etc. The latter is used for transducers whose final purpose is to produce digital data,
such as switches, buttons, cameras, and audio capture devices.

SmartData honors TSTP option for a Convergecast routing strategy that does not use addresses in
favor of Space-Time coordinates. Consequently, whenever a SmartData is advertised, it is advertised
to the Sink, which can declare Interests for a given kind of (smart) data. Sensors behind a SmartData
can Respond to such interests, while actuators can receive Commands from the Sink.

Header
include/smartdata.h

Interface

template<typename Transducer>
class SmartData: private TSTP::Observer, private Transducer::Observer
{
public:
 static const unsigned int UNIT = Transducer::UNIT;
 static const unsigned int NUM = Transducer::NUM;
 static const unsigned int ERROR = Transducer::ERROR;

 typedef TSTP::Unit Unit;
 typedef typename TSTP::Unit::Get<NUM>::Type Value;
 typedef TSTP::Error Error;
 typedef TSTP::Coordinates Coordinates;
 typedef TSTP::Time Time;

 enum Mode {
 PRIVATE = 0,
 ADVERTISED = 1,
 COMMANDED = 3
 };

public:

https://en.wikipedia.org/wiki/Wireless_sensor_network
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#TSTP
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Transducers
https://en.wikipedia.org/wiki/Physical_quantity
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Distributed_minimum_spanning_tree

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 49

 Smart_Data(unsigned int dev, const Microsecond & expiry,
 const Mode & mode = PRIVATE);
 Smart_Data(const Region & region, const Microsecond & expiry,
 const Microsecond & period = 0);
 ~Smart_Data();

 operator Value();
 const Coordinates & location() const;
 const Time & time() const;
};

Types

Unit
Represents the type of the encapsulated piece of data, either an SI Quantity or Digital data. For
SI Quantities, Unit encodes the associated SI Unit. For Digital data, it encodes a type Id. See SI
Quantities for additional information.

Value
Represents the encapsulated piece of data (i.e. the SmartData content). For Digital data, it
defines a string of bytes (unsigned char[]). For SI Quantities, Value is an alias to the native
C++ type associated with the NUM field encoded in Unit. See SI Quantities for additional
information.

Error
For SI Quantities, Error represents the scale of the measurement error as an order of
magnitude (i.e. 10ERROR).

Coordinates
Represents the location where the data was produced. It designates a 3D-point in a Cartesian
Coordinate System. This type does not assume a fixed center for the Coordinate System. It can
be used to represent positions relative to the Sink, to Earth's center or to any other arbitrary
point. The (x, y, z) triple is stored as 8, 16, or 32-bit scaled signed integers depending on the
configured network size. See TSTP Coordinates for additional information.

Time
Represents the time in which the data was produced as an offset in µs from
Traits<RTC>::EPOCH (usually January 1st, 1970). It is stored as an unsigned long long int
(64 bits).

Mode
Defines the operation mode for a local transducer (sensor or actuator). Has no meaning for
remote transducers.

PRIVATE: the local SmartData is private to the process that created it. It does not get

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://en.wikipedia.org/wiki/Observational_error
https://en.wikipedia.org/wiki/Coordinate_system#Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system#Cartesian_coordinate_system
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Coordinates

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 50

advertised to the network and therefore cannot be monitored nor controlled remotely.
ADVERTISED: the local SmartData is advertised to the network and therefore can be
remotely monitored (by the sink).
COMMANDED: the local SmartData is advertised to the network to be remotely controlled
(by the sink). Declaring a local SmartData COMMANDED does not implicitly means it is
ADVERTISED. That must be explicitly declared using (ADVERTISED | COMMANDED).

Constants

UNIT
Defines the type of the data produced by the transducer associated with an SmartData
instance. It is a numerical representation of a Unit. See SI Quantities for additional information.

NUM
It is only defined for SmartData that encapsulate SI Quantities, case in which it designates how
that quantity is encoded. It corresponds to the NUM field in Unit. See SI Quantities for additional
information.

ERROR
It is only defined for SmartData that encapsulate SI Quantities, case in which it designates the
associated transducer's measurement error scale as a magnitude order.

Methods

Smart_Data(unsigned int dev, const Microsecond & expiry, const Mode & mode =
PRIVATE)
Creates a SmartData to abstract the unit dev of (local) Transducer (a template parameter
designating either a Smart Sensor or a Smart Actuator). The data sampled from the transducer
is considered valid for expiry µs. Accessing the data through operator Value() after this
time in invalid. The default mode of operation is PRIVATE.
Note: during the application development phase, SmartData can be configured to log access to
expired data or even to produce fatal errors when it happens. However, this should never
happen in a production system and ensuring this is a design matter.

Smart_Data(const Region & region, const Microsecond & expiry, const Microsecond
& period = 0)
Creates a SmartData to abstract a remote Transducer capable of handling UNIT in a region
designated by region (an sphere of radius r centered at (x, y, z) from t0 until t1; see TSTP
Coordinates for additional information). The locally stored data received from the transducer is
considered valid for expiry µs. Accessing the data through operator Value() after this time
in invalid. If period is specified, then transducers matching the selection criteria (UNIT,
region) are instructed to send new data every period µs.

const Coordinates & location() const

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Coordinates
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Coordinates

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 51

Returns the location where the data was produced. Either TSTP::here() for local transducers
or the coordinates of the remote transducer that produced the data.
Note: TSTP uses a Cartesian Coordinate System centered at the Sink. This method converts
such relative coordinates to an absolute representation centered at the Earth's center whenever
the Sink absolute location is known.

const Time & time() const
Returns the time in which data was produced as an offset in µs from Traits<RTC>::EPOCH
(usually January 1st, 1970).

4.6.2. Unit
EPOS type Unit designates the kind of data encapsulated in a SmartData object, either an SI Quantity
or plain Digital Data. Its most significant bit (i.e. bit 31) determines the case: encoded SI Units have it
set (i.e. field SI = 1), while Digital Data have it clear (i.e. field SI = 0)

A Physical Quantity can be identified through the corresponding SI (derived) Unit. Whenever a
SmartData encapsulates a physical quantity, such information is encoded in a manner inspired by
IEEE 1451 TEDs. Conversely, Digital Data is simply tagged with an application-specific type and a
length. SmartData types are allocated by LISHA on demand and their lengths are type-dependent.
The highest significant bit of the type field, multi, defines if a Digital Unit represents a
MultiSmartData, a collection of SmartData that share common characteristics and are merged into a
single structure to avoid the replication of metadata. For instance, merging data with the same origin
(Multi-Unit SmartData) or same Unit (Multi-Value or Multi-Device SmartData). Most types will be
associated with a length expressed in bytes, limiting the SmartData size to 64 KB, but some types will
define coarser granularities (currently limited by the IoT database to 2GB per SmartData instance).
The length field of a digital unit is network protocol dependent, which with TSTP over IEEE 802.15.4
is limited to 81 bytes (this size may vary with network size and lifespan due to the scale of time and
space).

Header
include/smartdata.h

Digital Data Format

Bit 31 30 16 0

0 multi type length

SI Unit Format

Bit 31 29 27 24 21 18 15 12 9 6 3 0

1 NUM MOD sr+4 rad+4 m+4 kg+4 s+4 A+4 K+4 mol+4 cd+4

Interface

https://en.wikipedia.org/wiki/Physical_quantity
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/IEEE_1451
https://epos.lisha.ufsc.br/IoT+Platform#Bulk_Data_Insertion

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 52

class Unit
{
public:
 // Valid values for field SI
 enum : unsigned long {
 DIGITAL = 0U << 31, // The Unit is plain digital data. Subsequent 15 bits
designate the data type. Lower 16 bits are application-specific, usually a device
selector.
 SI = 1U << 31, // The Unit is SI. Remaining bits are interpreted as
specified here.
 SID = SI
 };

 // Valid values for field NUM
 enum : unsigned long {
 I32 = 0 << 29, // Value is an integral int stored in the 32 last significant
bits of a 32-bit big-endian integer.
 I64 = 1 << 29, // Value is an integral int stored in the 64 last significant
bits of a 64-bit big-endian integer.
 F32 = 2 << 29, // Value is a real int stored as an IEEE 754 binary32 big-endian
floating point.
 D64 = 3 << 29, // Value is a real int stored as an IEEE 754 binary64 big-endian
double precision floating point.
 NUM = D64 // AND mask to select NUM bits
 };

 // Valid values for field MOD
 enum : unsigned long {
 DIR = 0 << 27, // Unit is described by the product of SI base units raised
to the powers recorded in the remaining fields.
 DIV = 1 << 27, // Unit is U/U, where U is described by the product SI base
units raised to the powers recorded in the remaining fields.
 LOG = 2 << 27, // Unit is log_e(U), where U is described by the product of
SI base units raised to the powers recorded in the remaining fields.
 LOG_DIV = 3 << 27, // Unit is log_e(U/U), where U is described by the product
of SI base units raised to the powers recorded in the remaining fields.
 MOD = LOG_DIV // AND mask to select MOD bits
 };

 // Masks to select the SI units
 enum : unsigned long {
 SR = 7 << 24,
 RAD = 7 << 21,
 M = 7 << 18,
 KG = 7 << 15,
 S = 7 << 12,
 A = 7 << 9,
 K = 7 << 6,
 MOL = 7 << 3,
 CD = 7 << 0

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 53

 };

 // Mask to select field LEN of digital data
 enum : unsigned long {
 LEN = (1 << 16) - 1
 };

 // Helper to create digital units
 template<unsigned int _TYPE, bool _MULTI , unsigned int _SUBTYPE, unsigned int
_LEN>
 class Digital_Unit
 {
 public:
 // DIGITAL | multi | type
| length
 enum : unsigned long { UNIT = DIGITAL | _MULTI << 30 | _TYPE << 24 | _SUBTYPE
<< 16 | _LEN << 0 }; // LEN field can be an index into a dictionary of accepted lengths
for the specific unit

 private:
 // Compile-time verifications
 static const typename IF<(_MULTI & (~1)) , void, bool>::Result
Invalid_TYPE = false;
 static const typename IF<(_TYPE & (~((1 << 6) - 1))), void, bool>::Result
Invalid_TYPE = false;
 static const typename IF<(_SUBTYPE & (~((1 << 8) - 1))), void, bool>::Result
Invalid_SUBTYPE = false;
 static const typename IF<(_LEN & (~LEN)) , void, bool>::Result
Invalid_LEN = false;
 };

 // Helper to create SI units
 template<int _MOD, int _SR, int _RAD, int _M, int _KG, int _S, int _A, int _K, int
_MOL, int _CD>
 class SI_Unit
 {
 public:
 // SI | MOD | sr | rad
| m | kg | s | A | K |
mol | cd
 enum : unsigned long { UNIT = SI | _MOD | (4 + _SR) << 24 | (4 + _RAD) << 21
| (4 + _M) << 18 | (4 +_KG) << 15 | (4 + _S) << 12 | (4 + _A) << 9 | (4 + _K) << 6 |
(4 + _MOL) << 3 | (4 + _CD) };

 private:
 // Compile-time verifications
 static const typename IF<(_MOD & (~MOD)), void, bool>::Result Invalid_MOD
= false;
 static const typename IF<((_SR + 4) & (~7u)), void, bool>::Result Invalid_SR
= false;

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 54

 static const typename IF<((_RAD + 4) & (~7u)), void, bool>::Result Invalid_RAD
= false;
 static const typename IF<((_M + 4) & (~7u)), void, bool>::Result Invalid_M
= false;
 static const typename IF<((_KG + 4) & (~7u)), void, bool>::Result Invalid_KG
= false;
 static const typename IF<((_S + 4) & (~7u)), void, bool>::Result Invalid_S
= false;
 static const typename IF<((_A + 4) & (~7u)), void, bool>::Result Invalid_A
= false;
 static const typename IF<((_K + 4) & (~7u)), void, bool>::Result Invalid_K
= false;
 static const typename IF<((_MOL + 4) & (~7u)), void, bool>::Result Invalid_MOL
= false;
 static const typename IF<((_CD + 4) & (~7u)), void, bool>::Result Invalid_CD
= false;
 };

 // Typical SI Quantities
 enum Quantity : unsigned long {
 // mod, sr, rad, m, kg, s,
A, K, mol, cd unit | HEX
 Acceleration = SI_Unit<DIR, +0, +0, +1, +0, -2,
+0, +0, +0, +0>::UNIT, // m/s2 |
 Angle = SI_Unit<DIR, +0, +1, +0, +0, +0,
+0, +0, +0, +0>::UNIT, // rad
 Amount_of_Substance = SI_Unit<DIR, +0, +0, +0, +0, +0,
+0, +0, +1, +0>::UNIT, // mol
 Angular_Velocity = SI_Unit<DIR, +0, +1, +0, +0, -1,
+0, +0, +0, +0>::UNIT, // rad/s
 Area = SI_Unit<DIR, +0, +0, +2, +0, +0,
+0, +0, +0, +0>::UNIT, // m2
 Current = SI_Unit<DIR, +0, +0, +0, +0, +0,
+1, +0, +0, +0>::UNIT, // Ampere
 Electric_Current = Current,
 Force = SI_Unit<DIR, +0, +0, +1, +1, -2,
+0, +0, +0, +0>::UNIT, // Newton
 Humidity = SI_Unit<DIR, +0, +0, -3, +1, +0,
+0, +0, +0, +0>::UNIT, // kg/m3
 Length = SI_Unit<DIR, +0, +0, +1, +0, +0,
+0, +0, +0, +0>::UNIT, // m
 Luminous_Intensity = SI_Unit<DIR, +0, +0, +0, +0, +0,
+0, +0, +0, +1>::UNIT, // cd
 Mass = SI_Unit<DIR, +0, +0, +0, +1, +0,
+0, +0, +0, +0>::UNIT, // kg
 Power = SI_Unit<DIR, +0, +0, +2, +1, -3,
+0, +0, +0, +0>::UNIT, // Watt
 Pressure = SI_Unit<DIR, +0, +0, -1, +1, -2,
+0, +0, +0, +0>::UNIT, // Pascal
 Velocity = SI_Unit<DIR, +0, +0, +1, +0, -1,

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 55

+0, +0, +0, +0>::UNIT, // m/s
 Sound_Intensity = SI_Unit<DIR, +0, +0, +0, +1, -3,
+0, +0, +0, +0>::UNIT, // W/m2
 Temperature = SI_Unit<DIR, +0, +0, +0, +0, +0,
+0, +1, +0, +0>::UNIT, // Kelvin
 Time = SI_Unit<DIR, +0, +0, +0, +0, +1,
+0, +0, +0, +0>::UNIT, // s
 Speed = Velocity,
 Volume = SI_Unit<DIR, +0, +0, +3, +0, +0,
+0, +0, +0, +0>::UNIT, // m3
 Voltage = SI_Unit<DIR, +0, +0, +2, +1, -3,
-1, +0, +0, +0>::UNIT, // Volt
 Water_Flow = SI_Unit<DIR, +0, +0, +3, +0, -1,
+0, +0, +0, +0>::UNIT, // m3/s

 Ratio = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4,
-4, -4, -4, -4>::UNIT, // not an SI unit
 Percent = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4,
-4, -4, -4, -3>::UNIT, // not an SI unit, a ratio < 1
 PPM = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4,
-4, -4, -4, -2>::UNIT, // not an SI unit, a ratio in parts per million
 PPB = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4,
-4, -4, -4, -1>::UNIT, // not an SI unit, a ratio in parts per billion
 Relative_Humidity = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4,
-4, -4, -4, +0>::UNIT, // not an SI unit, a percentage representing the
partial pressure of water vapor in the mixture to the equilibrium vapor pressure of
water over a flat surface of pure water at a given temperature
 Power_Factor = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4,
-4, -4, -4, +1>::UNIT, // not an SI unit, a ratio of the real power
absorbed by the load to the apparent power flowing in the circuit; a dimensionless
number in [-1,1]
 Counter = SI_Unit<LOG_DIV, -4, -4, -4, -4,
-4, -4, -4, -4, +2>::UNIT, // not an SI unit, the current value of an
external counter
 Antigravity = SI_Unit<LOG_DIV, +3, +3, +3, +3, +3,
+3, +3, +3, +3>::UNIT // for Dummy_Transducer :-)
 };

 // Digital data types
 enum Digital_Data: unsigned long {
 // multi, type, subtype, length
 // Switches
 Direction = Digital_Unit<0, 0, 1, 1>::UNIT,
 Switch = Digital_Unit<0, 0, 0, 1>::UNIT,
 On_Off = Switch,
 // RFIDs and SmartCartds
 RFID32 = Digital_Unit<0, 1, 0, 4>::UNIT,
 // Audio and Video (from RTP) A/V
Hz Ch Ref
 PCMU = Digital_Unit<0, 2, 0, 0>::UNIT, // A

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 56

8000 1 [RFC3551]
 GSM = Digital_Unit<0, 2, 3, 0>::UNIT, // A
8000 1 [RFC3551]
 G723 = Digital_Unit<0, 2, 4, 0>::UNIT, // A
8000 1 [Vineet_Kumar][RFC3551]
 DVI4_8 = Digital_Unit<0, 2, 5, 0>::UNIT, // A
8000 1 [RFC3551]
 DVI4_16 = Digital_Unit<0, 2, 6, 0>::UNIT, // A
16000 1 [RFC3551]
 LPC = Digital_Unit<0, 2, 7, 0>::UNIT, // A
8000 1 [RFC3551]
 PCMA = Digital_Unit<0, 2, 8, 0>::UNIT, // A
8000 1 [RFC3551]
 G722 = Digital_Unit<0, 2, 9, 0>::UNIT, // A
8000 1 [RFC3551]
 L16_2 = Digital_Unit<0, 2, 10, 0>::UNIT, // A
44100 2 [RFC3551]
 L16_1 = Digital_Unit<0, 2, 11, 0>::UNIT, // A
44100 1 [RFC3551]
 QCELP = Digital_Unit<0, 2, 12, 0>::UNIT, // A
8000 1 [RFC3551]
 CN = Digital_Unit<0, 2, 13, 0>::UNIT, // A
8000 1 [RFC3389]
 MPA = Digital_Unit<0, 2, 14, 0>::UNIT, // A
90000 [RFC3551][RFC2250]
 G728 = Digital_Unit<0, 2, 15, 0>::UNIT, // A
8000 1 [RFC3551]
 DVI4_11 = Digital_Unit<0, 2, 16, 0>::UNIT, // A
11025 1 [Joseph_Di_Pol]
 DVI4_22 = Digital_Unit<0, 2, 17, 0>::UNIT, // A
22050 1 [Joseph_Di_Pol]
 G729 = Digital_Unit<0, 2, 18, 0>::UNIT, // A
8000 1 [RFC3551]
 CelB = Digital_Unit<0, 2, 25, 0>::UNIT, // V
90000 [RFC2029]
 JPEG = Digital_Unit<0, 2, 26, 0>::UNIT, // V
90000 [RFC2435]
 nv = Digital_Unit<0, 2, 28, 0>::UNIT, // V
90000 [RFC3551]
 H261 = Digital_Unit<0, 2, 31, 0>::UNIT, // V
90000 [RFC4587]
 MPV = Digital_Unit<0, 2, 32, 0>::UNIT, // V
90000 [RFC2250]
 MP2T = Digital_Unit<0, 2, 33, 0>::UNIT, //
AV 90000 [RFC2250]
 H263 = Digital_Unit<0, 2, 34, 0>::UNIT, // V
90000 [Chunrong_Zhu]
 WAV_FLAC = Digital_Unit<0, 2, 35, 0>::UNIT, // A
20000 WAV - FLAC compression

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 57

 // MultiUnit SmartData
 Motion_Vector_V2X = Digital_Unit<1, 0, 0, 1>::UNIT, //
subtype is object class, LEN > 1 is a list type with LEN elements
 Motion_Vector_Local = Digital_Unit<1, 1, 0, 1>::UNIT, //
subtype is object class, LEN > 1 is a list type with LEN elements
 EGO_State = Digital_Unit<1, 2, 0, 1>::UNIT //
subtype is object class, LEN > 1 is a list type with LEN elements
 };

 // SI Factors
 typedef char Factor;
 enum {
 // Name Code Symbol Factor
 ATTO = (8 - 8), // a 0.000000000000000001
 FEMTO = (8 - 7), // f 0.000000000000001
 PICO = (8 - 6), // p 0.000000000001
 NANO = (8 - 5), // n 0.000000001
 MICRO = (8 - 4), // μ 0.000001
 MILI = (8 - 3), // m 0.001
 CENTI = (8 - 2), // c 0.01
 DECI = (8 - 1), // d 0.1
 NONE = (8), // - 1
 DECA = (8 + 1), // da 10
 HECTO = (8 + 2), // h 100
 KILO = (8 + 3), // k 1000
 MEGA = (8 + 4), // M 1000000
 GIGA = (8 + 5), // G 1000000000
 TERA = (8 + 6), // T 1000000000000
 PETA = (8 + 7) // P 1000000000000000
 };

 template<unsigned long UNIT>
 struct Get
 {
 typedef typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned
long)(UNIT & NUM) == I32), long int,
 typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned
long)(UNIT & NUM) == I64), long long int,
 typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned
long)(UNIT & NUM) == F32), float,
 typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned
long)(UNIT & NUM) == D64), double,
 typename IF<((unsigned long)(UNIT & SID) == DIGITAL) && ((unsigned
long)(UNIT & LEN) == 1), unsigned char,
 typename IF<((unsigned long)(UNIT & SID) == DIGITAL) && ((unsigned
long)(UNIT & LEN) == 2), unsigned short,
 typename IF<((unsigned long)(UNIT & SID) == DIGITAL) && ((unsigned
long)(UNIT & LEN) == 4), unsigned long,
 typename IF<((unsigned long)(UNIT & SID) == DIGITAL) && ((unsigned
long)(UNIT & LEN) > 4), unsigned char*, //[UNIT & LEN]

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 58

void>::Result>::Result>::Result>::Result>::Result>::Result>::Result>::Result Type;
 };

 template<typename T>
 struct GET;

 template<unsigned long U>
 struct Wrap { enum : unsigned long { UNIT = U }; };

public:
 Unit(): _unit(0) {}
 Unit(unsigned long u) { _unit = u; }

 operator unsigned long() const { return _unit; }

 unsigned int value_size() const {
 return (_unit & SI) && ((_unit & NUM) == I32) ? sizeof(long int)
 : (_unit & SI) && ((_unit & NUM) == I64) ? sizeof(long long int)
 : (_unit & SI) && ((_unit & NUM) == F32) ? sizeof(float)
 : (_unit & SI) && ((_unit & NUM) == D64) ? sizeof(double)
 : !(_unit & SI) ? _unit & LEN : 0;
 }

 static unsigned int value_size(unsigned long unit) {
 return (unit & SI) && ((unit & NUM) == I32) ? sizeof(long int)
 : (unit & SI) && ((unit & NUM) == I64) ? sizeof(long long int)
 : (unit & SI) && ((unit & NUM) == F32) ? sizeof(float)
 : (unit & SI) && ((unit & NUM) == D64) ? sizeof(double)
 : !(unit & SI) ? unit & LEN : 0;
 }

 int sr() const { return ((_unit & SR) >> 24) - 4 ; }
 int rad() const { return ((_unit & RAD) >> 21) - 4 ; }
 int m() const { return ((_unit & M) >> 18) - 4 ; }
 int kg() const { return ((_unit & KG) >> 15) - 4 ; }
 int s() const { return ((_unit & S) >> 12) - 4 ; }
 int a() const { return ((_unit & A) >> 9) - 4 ; }
 int k() const { return ((_unit & K) >> 6) - 4 ; }
 int mol() const { return ((_unit & MOL) >> 3) - 4 ; }
 int cd() const { return ((_unit & CD) >> 0) - 4 ; }

} __attribute__((packed));

Constants

NUM field
I32: quantity is encoded as a 32-bit, little-endian, integral number.
I64: quantity is encoded as a 64-bit, little-endian, integral number.
F32: quantity is encoded as a 32-bit, little-endian, IEEE 754 binary32, floating point

https://en.wikipedia.org/wiki/IEEE_floating_point

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 59

number.
D64: quantity is encoded as a 64-bit, little-endian, IEEE 754 binary64, floating point
number.

MOD field
DIR: unit is directly described by the product of SI base units raised to the powers
recorded in the remaining fields.
DIV: unit is U/U, where U is described by the product SI base units raised to the powers
recorded in the remaining fields.
LOG: unit is loge(U), where U is described by the product of SI base units raised to the
powers recorded in the remaining fields.
LOG_DIV: unit is loge(U/U), where U is described by the product of SI base units raised to
the powers recorded in the remaining fields.

Basic Units fields (encoded as 4 + exponent, with exponent ranging from -4 to +3)
SR: exponent of the Steradian component of the SI derived unit.
RAD: exponent of the Radian component of the SI derived unit.
M: exponent of the Meter component of the SI derived unit.
KG: exponent of the Kilogram component of the SI derived unit.
S: exponent of the Second component of the SI derived unit.
A: exponent of the Ampere component of the SI derived unit.
K: exponent of the Kelvin component of the SI derived unit.
MOL: exponent of the Mole component of the SI derived unit.
CD: exponent of the Candela component of the SI derived unit.

Typical SI Derived Units as a function of Basic Units fields
A set of constants designating typical derivations from SI Basic Units is provided here.

Counts (Not SI UNITS)
Counts, even parts per million and percentages, do not fit the (type, subtype, length) idea of
Digital UNITS. Therefore, they are modeled as SI UNITS. They are:

Ratio;
Percent, a ratio < 1;
Parts per Milion (PPM), a ratio in parts per million, and Parts per Billion (PPB), a ratio in
parts per billion;
Relative_Humidity, a percentage representing the partial pressure of water vapor in the
mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a
given temperature;
Power_Factor, a ratio of the real power absorbed by the load to the apparent power
flowing in the circuit; a dimensionless number in the range [-1,1];
Counter, the current value of an external counter;

https://en.wikipedia.org/wiki/IEEE_floating_point
https://epos.lisha.ufsc.br/Usefull+SmartData+Units

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 60

MultiUnits
AV MultiUnits are defined at the LISHA's AV SmartData Model.

SI Unit Prefixes
A set of constants designating the SI Unit Prefixes is provided.

Metaprograms

Get<int N>::Type
Returns the C++ native type Value is aliased to:

I32: signed long int;
I64: signed long long int;
F32: float;
D64: double.

GET<typename T>::NUM
Returns the NUM field associated with T:

double: D64.
float: F32.
long long int: I64.
otherwise: I32.

Methods

Interoperability with unsigned long
A constructor and a conversion operator are provided so that Unit can be used as if it were an
ordinary unsigned long.

Basic SI Unit exponent extraction
Methods are provided to get the exponent for each of the SI Basic Units in Unit.

Examples

4.6.3. Persistent Storage
Whenever a piece of SmartData is stored in a database, file system, or any sort of persistent
memory that can be externally accessed, a canonical format is used.
Header
include/smartdata.h

Interface

STATIC

template<typename Transducer>

https://lisha.ufsc.br/SDAV+-+SmartData+Model

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 61

class Smart_Data: private TSTP::Observer, private Transducer::Observer
{
public:
 struct DB_Record {
 unsigned char type;
 unsigned long unit;
 double value;
 unsigned char error;
 unsigned char confidence;
 long x;
 long y;
 long z;
 long device;
 unsigned long long t;
 };

 struct DB_Series {
 unsigned char type;
 unsigned long unit;
 long x;
 long y;
 long z;
 long device;
 unsigned long r;
 unsigned long long t0;
 unsigned long long t1;
 };
};

MOBILE

template<typename Transducer>
class Smart_Data: private TSTP::Observer, private Transducer::Observer
{
public:
 struct DB_Record {
 unsigned char type;
 unsigned long unit;
 Value value;
 unsigned char error;
 unsigned char confidence;
 unsigned char[8] ID;
 float longitude;
 float latitude;
 float altitude;
 long device;
 unsigned long long t;
 };

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 62

 struct DB_Series {
 unsigned char type;
 unsigned long unit;
 unsigned char[8] ID;
 long device;
 unsigned long long t0;
 unsigned long long t1;
 };
};

Value: The type Value is dependent on the unit specification as previously described.
ID: a 64-bit cryptographic identifier resultant of a hash of the Public certificate of a
mobile device producing SmartData. During execution, the mobile version of SmartData
comprises an origin based on ID and time instead of Space and Time. For Persistent
storage, a source of position is assumed to be available at the mobile device to compose
the DB_Record. However, a DB_Series will use the origin information and base coordinates
on the DB_Records for the specific ID and time range (t0 until t1) and the radio range of
the object.
longitude, latitude, altitude: For local management of SmartData in a mobile
device, such as an Autonomous Vehicles (AV), several objects identified via vision
perception are represented with coordinates in relation to the AV current position, with
the absence of the Z coordinate (altitude). Therefore, to avoid errors in local processing
due to converting latitude and longitude to ECEF coordinates, position is handled locally in
latitude and longitude represented in radians SI Quantity. Nevertheless, when data is
communicated in V2X or forwarded to persistent storage, a transformation is applied to
the coordinates based on the vehicle coordinates (which comprise the altitude) to obtain
a complete perception of longitude, latitude, and altitude.

Types

DB_Record
Defines an interoperable format for the content of a SmartData representing Digital Data or an
SI Quantity, according to unit value. The format is used for both, storing and transmission
using non-native protocols. See IoT+with+EPOS for additional information.

DB_Series
Defines an interoperable format to designate time-series of Smart Data stored in a database or
streamed using non-native protocols. See IoT+with+EPOS for additional information.

Methods

DB_Record db_record() const
Returns an DB_Record representing the content of this SmartData in an interoperable format.

https://epos.lisha.ufsc.br/IoT+with+EPOS
https://epos.lisha.ufsc.br/IoT+with+EPOS

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 63

DB_Series db_series() const
Returns a Series associated with this SmartData in an interoperable format.

4.6.4. Transducers
A Transducer class interfaces a hardware mediator for a transducer (a sensor and/or actuator) with a
SmartData instance. Some Transducers may require the user to call the constructor for hardware
initialization and binding. Besides that, the application should only use SmartData objects, and not
the Transducers directly. Each specific sensor has a transducer class, and we show a simple example
below. Consult the header file for all available transducers and their particular implementations.

Header
include/machine/<machine>/transducer.h

Interface

class Transducer: public Transducer_Hardware_Mediator
{
public:
 static const unsigned int UNIT;
 static const unsigned int NUM;
 static const int ERROR;

 static const bool INTERRUPT;
 static const bool POLLING;

 typedef Transducer_Hardware_Mediator::Observer Observer;
 typedef Transducer_Hardware_Mediator::Observed Observed;

public:
 Transducer();

 static void sense(unsigned int dev, Smart_Data<Transducer> * data);

 static void actuate(unsigned int dev, Smart_Data<Transducer> * data, const
Smart_Data<Transducer>::Value & command);
};

typedef Smart_Data<Transducer> Smart_Transducer;

Types

Observer
A redefinition of the mediator's Observer type. Only present if the mediator is observable in an
event-driven scheme (i.e. when INTERRUPT = true).

Observed
A redefinition of the mediator's Observed type. Only present if the mediator is observable in an
event-driven scheme (i.e. when INTERRUPT = true).

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 64

Smart_Transducer
At the end of the transducer header file, there are definitions for all available SmartData for the
corresponding machine, with appropriate Transducer type bindings. These are the classes that
the application should use.

Constants

UNIT
Defines the type of data produced by the sensor associated with this Transducer. It is a
numerical representation of a Unit. See SI Quantities for additional information.

NUM
It is only defined for Transducers that encapsulate SI Quantities, case in which it designates how
that quantity is encoded. It corresponds to the NUM field in Unit. See SI Quantities for additional
information.

ERROR
It is only defined for Transducers that encapsulate SI Quantities, case in which it designates the
associated transducer's measurement error scale as a magnitude order.

INTERRUPT
Whether this transducer is observable in an event-driven way. If true, the SmartData interfacing
with this transducer will call its attach method during construction, so that it can be notified
whenever a new value is available from the sensor and call its sense method to get that value
(See Observer for details on observers).

POLLING
Whether this transducer is observable in a time-triggered way. If true, the SmartData
interfacing with this transducer may call its sense method whenever it needs a new sensor
reading.

Methods

Transducer()
Some transducers require the application to call their constructors in order to initialize the
corresponding hardware mediator and bind it to a dev number known to a SmartData instance.
Consult the actual implementation you are using for details.

static void sense(unsigned int dev, Smart_Data<Transducer> * data)
This method is called by a SmartData instance when it needs to get a new reading from the
sensor when this transducer is capable of sensing. This method implements the actual
hardware reading, usually by forwarding it to the base mediator class, and assigns the results to

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 65

*data. SmartData encapsulates all the protocol interactions and decisions regarding to when
this method should be called. The dev parameter is used to distinguish between multiple
sensors of the same kind, and it is defined by the user and passed to the SmartData
constructor. Some transducers require the same dev number to be passed at the constructor
for correct binding. Consult the actual implementation you are using for details.

static void actuate(unsigned int dev, Smart_Data<Transducer> * data, const
Smart_Data<Transducer>::Value & command)
Similar to sense. The value command should be written to the hardware mediator, when this
Transducer is capable of actuating.

Examples

// SmartData Declarations
typedef Smart_Data<Accelerometer> Acceleration;
typedef Smart_Data<Voltmeter> Voltage;
typedef Smart_Data<Thermometer> Temperature;
typedef Smart_Data<Photometer> Illuminace;

// SmartData Usage

// Local acceleration data from accelerometer "0"
// with expiration time of "expiry" µs.
Acceleration a(0, expiry);
cout << "The acceleration here is" << a << "m/s^2." << endl;

// Remote temperature in Kelvin from a region centered at (x, y, z), with radius "r",
// from time "t0" until time "t1", updated every "period" µs
// with expiration time of "expiry" µs.
Temperature k(Region(Coordinates(x, y, z), r, t0, t1), expiry, period);
for(Time t = TSTP::now(); t < t1; t = TSTP::now()) {
 cout << "The temperature there is " << k << "K." << endl;
 Delay(period);
}

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 66

4.7. Utilities
EPOS provides a set of Utility Classes that can be used for both application and system
development. Although of far more limited scope, programmers can take them as EPOS counterpart
to libc and libstdc++.

4.7.1. Containers
Operating systems spend most of their CPU time managing lists. Processes, resources, buffers, and
virtually any other object in the system are kept in and moved across lists. Therefore, EPOS Lists have
been carefully designed for efficiency. Although similar to the C++ Standard Library Lists, they have a
key difference: objects subject to list insertion and removal must contain a linkage data structure (viz.
Element) within themselves. In this way, EPOS Lists do not waste time with memory allocation and
deallocation of such operations. Objects must be aware of how many lists can contain them at the
same time and declared the necessary number of linkage data structures.

EPOS provides the following containers: Vector, List, Hash Table, Queue, Bitmap, and Zero-Copy
Buffers. They are build atop 4 basic types of Lists, each implemented both as a single-linked and as
double-linked. Single-linked Lists are prefixed with Simple_. Singly-linked lists require less memory,
but depend on sequential search operations. Doubly-linked ones require more memory, but support
removal (and other operations) from arbitrary positions. The four basic types are: ordinary, ordered,
relatively ordered, and grouping.

Ordered containers are kept ordered by a Rank. Types acting as Rank must either declare operator
int() or declare the full set of logic operators. Relatively ordered containers are also kept ordered by
Rank, but ranks are interpreted as offsets from/to neighboring elements. Operations ensure that such
relative ranks are properly adjusted whenever an element is inserted into or removed from a
relatively ordered container. EPOS also provides a Grouping container that implements the Buddy
algorithm. It is mostly used to implement memory allocators.

Besides basic containers, EPOS also provides a powerful Scheduling List framework.

4.7.1.1. Linkage Elements and Ranks

Header
include/utility/list.h

Interface

class List_Element_Rank
{
public:
 List_Element_Rank(int r = 0);

 operator int();
};

namespace List_Elements
{
 typedef List_Element_Rank Rank;

https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Buddy_memory_allocation

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 67

 // Vector Element
 template<typename T>
 class Pointer
 {
 public:
 typedef T Object_Type;
 typedef Pointer Element;

 public:
 Pointer(const T * o);
 T * object();
 };

 // Hash Table Element
 template<typename T, typename R = Rank>
 class Ranked
 {
 public:
 typedef T Object_Type;
 typedef R Rank_Type;
 typedef Ranked Element;

 public:
 Ranked(const T * o, const R & r = 0);

 T * object();

 const R & rank();
 const R & key();
 void rank(const R & r);
 int promote(const R & n = 1) ;
 int demote(const R & n = 1);
 };

 // Simple List Element
 template<typename T>
 class Singly_Linked
 {
 public:
 typedef T Object_Type;
 typedef Singly_Linked Element;

 public:
 Singly_Linked(const T * o);
 T * object();

 Element * next();
 void next(Element * e);
 };

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 68

 // Simple Ordered List Element
 // Hash Table's Synonym List Element
 template<typename T, typename R = Rank>
 class Singly_Linked_Ordered
 {
 public:
 typedef T Object_Type;
 typedef Rank Rank_Type;
 typedef Singly_Linked_Ordered Element;

 public:
 Singly_Linked_Ordered(const T * o, const R & r = 0);
 T * object() const ;

 Element * next();
 void next(Element * e);

 const R & rank();
 const R & key();
 void rank(const R & r);
 int promote(const R & n = 1);
 int demote(const R & n = 1);
 };

 // Simple Grouping List Element
 template<typename T>
 class Singly_Linked_Grouping
 {
 public:
 typedef T Object_Type;
 typedef Singly_Linked_Grouping Element;

 public:
 Singly_Linked_Grouping(const T * o, int s);

 T * object();

 Element * next();
 void next(Element * e);

 unsigned int size();
 void size(unsigned int l);
 void shrink(unsigned int n);
 void expand(unsigned int n);
 };

 // List Element
 template<typename T>
 class Doubly_Linked
 {

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 69

 public:
 typedef T Object_Type;
 typedef Doubly_Linked Element;

 public:
 Doubly_Linked(const T * o);
 T * object();

 Element * prev();
 Element * next();
 void prev(Element * e);
 void next(Element * e);
 };

 // Ordered List Element
 template<typename T, typename R = Rank>
 class Doubly_Linked_Ordered
 {
 public:
 typedef T Object_Type;
 typedef Rank Rank_Type;
 typedef Doubly_Linked_Ordered Element;

 public:
 Doubly_Linked_Ordered(const T * o, const R & r = 0);

 T * object();

 Element * prev();
 Element * next();
 void prev(Element * e);
 void next(Element * e);

 const R & rank();
 void rank(const R & r);
 int promote(const R & n = 1);
 int demote(const R & n = 1);
 };
 // Scheduling List Element
 template<typename T, typename R = Rank>
 class Doubly_Linked_Scheduling
 {
 public:
 typedef T Object_Type;
 typedef Rank Rank_Type;
 typedef Doubly_Linked_Scheduling Element;

 public:
 Doubly_Linked_Scheduling(const T * o, const R & r = 0);
 T * object();

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 70

 Element * prev();
 Element * next();
 void prev(Element * e);
 void next(Element * e);

 const R & rank();
 void rank(const R & r);
 int promote(const R & n = 1);
 int demote(const R & n = 1);
 };

 // Grouping List Element
 template<typename T>
 class Doubly_Linked_Grouping
 {
 public:
 typedef T Object_Type;
 typedef Doubly_Linked_Grouping Element;

 public:
 Doubly_Linked_Grouping(const T * o, int s);

 T * object();

 Element * prev();
 Element * next();
 void prev(Element * e);
 void next(Element * e);

 unsigned int size();
 void size(unsigned int l);
 void shrink(unsigned int n);
 void expand(unsigned int n);
 };
};

Types

List_Element_Rank
The basic Rank type for ordered containers. It declares a constructor and operator int() to
become interoperable with the native C++ type. Customized rank types can either follow this
approach or must define the full set of logic operators for sorting operations.

Linkage Elements
template<typename T>
class Pointer
Linkage Element for Vector.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 71

template<typename T, typename R = Rank>
class Ranked
Linkage Element for Hash.

template<typename T, typename R = Rank>
class Singly_Linked_Ordered
Linkage Element for Simple_Ordered_List. It is also used as element in Hash Table's
synonyms list.

template<typename T>
class Singly_Linked_Grouping
Linkage Element for Simple_Grouping_List.

template<typename T>
class Doubly_Linked
Linkage Element for List.

template<typename T, typename R = Rank>
class Doubly_Linked_Ordered
Linkage Element for Ordered_List.

template<typename T>
class Doubly_Linked_Grouping
Linkage Element for Grouping_List.

template<typename T, typename R = Rank>
class Doubly_Linked_Scheduling
Linkage Element for Scheduling_List.
Common Type Exports

Object_Type
An alias for the type of the object associated with the Element.
Rank_Type
An alias for the type of the Rank of the object associated with the Element. It is only
defined for Ordered containers.
Element
An alias for the type of the Element.

Methods

T * object()
Returns a pointer to the object associated with the Element.

Element * prev()

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 72

Returns a pointer to the previous Element linked with the Element or 0 if it is the Head. It is only
defined for doubly-linked containers.

void prev(Element * e)
Sets the previous link in the Element to e. It is only defined for doubly-linked containers.

Element * next()
Returns a pointer to the next Element linked with the Element or 0 if it is the Tail.

void next(Element * e)
Sets the next link in the Element to e.

const R & rank()
For ordered containers, returns the Element's Rank.

void rank(const R & r)
For ordered containers, sets the Element's Rank. It does not reorder the container, though. This
method is meant to be called by the sorting algorithms during reordering.

int promote(const R & n = 1)
For ordered containers, increments the Element's Rank by n. It does not reorder the container,
though. This method is meant to be called by the sorting algorithms during reordering.

int demote(const R & n = 1)
For ordered containers, decrements the Element's Rank by n. It does not reorder the container,
though. This method is meant to be called by the sorting algorithms during reordering.

unsigned int size()
Only defined for Grouping Lists, returns the size of the resource set associated with the
Element.

void size(unsigned int l)
Only defined for Grouping Lists, sets the size of the resource set associated with the Element.

void shrink(unsigned int n)
Only defined for Grouping Lists, decrements the size of the resource set associated with the
Element by n.

void expand(unsigned int n)
Only defined for Grouping Lists, increments the size of the resource set associated with the

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 73

Element by n.

4.7.1.2. Iterators

The following Iterators are common to all EPOS containers. They can be used mostly like those in the
C++ Standard Library.

Header
include/utility/list.h

Interface

namespace List_Iterators
{
 // Forward Iterator (for singly linked lists)
 template<typename El>
 class Forward
 {
 public:
 typedef El Element;

 public:
 Forward();
 Forward(Element * e);

 operator Element *();

 Element & operator*();
 Element * operator->();

 Iterator & operator++();
 Iterator operator++(int);

 bool operator==(const Iterator & i);
 bool operator!=(const Iterator & i);
 };

 // Bidirectional Iterator (for doubly linked lists)
 template<typename El>
 class Bidirecional
 {
 public:
 typedef El Element;

 public:
 Bidirecional();
 Bidirecional(Element * e);

 operator Element *();

 Element & operator*();

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 74

 Element * operator->();

 Iterator & operator++();
 Iterator operator++(int);

 Iterator & operator--();
 Iterator operator--(int)
 bool operator==(const Iterator & i);
 bool operator!=(const Iterator & i);
 };
}

Types

Forward
An Iterator for singly-linked containers.

Forward
An Iterator for doubly-linked containers.

4.7.1.3. Vector

EPOS provides a Vector container similar to that in the C++ Standard Library.

Header
include/utility/vector.h

Interface

template<typename T, unsigned int SIZE, typename El = List_Elements::Pointer<T> >
class Vector
{
public:
 typedef T Object_Type;
 typedef El Element;

public:
 Vector();

 bool empty();
 unsigned int size();

 Element * operator[](unsigned int i);

 bool insert(Element * e, unsigned int i);

 Element * remove(unsigned int i);
 Element * remove(Element * e);
 Element * remove(const Object_Type * obj);
 Element * search(const Object_Type * obj) ;
};

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 75

Methods

Vector()
Creates a vector.

bool empty()
Returns true if the vector is empty and false otherwise.

unsigned int size()
Returns the number of elements in the vector.

Element * get(int i)
Returns a pointer to the element stored at position i in the vector.

bool insert(Element * e, unsigned int i)
Inserts element e in the vector at position i. If the position was already occupied, returns false.
Otherwise, returns true.

Element * remove(unsigned int i)
Removes the element at position "i" and returns this element. It returns 0 if the position "i" is
invalid.

Element * remove(Element * e)
Removes element e from the vector and returns a pointer to it, or returns 0 if the element is not
in the vector.

Element * remove(const Object_Type * obj)
Searches the vector for an element containing the object pointed by obj. If found, removes that
element from the vector and returns a pointer to it, otherwise it returns 0.

Element * search(const Object_Type * obj)
Searches the vector for an element containing the object pointed by obj. If found, returns a
pointer to it, otherwise returns 0.

Examples

4.7.1.4. Lists

EPOS provides 9 implementations of list: ordinary, ordered, relatively ordered, grouping, and
scheduling. The first 4 are provided both as singly-linked and as doubly-linked. The scheduling list is
only provided as doubly-linked. Singly-linked lists are prefixed with Simple_, define a Forward
Iterator and by default use a Singly_Linkedlinkage element. Ordered lists are kept ordered by a

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 76

Rank. Relatively ordered list elements have their ranks interpreted as offsets from/to neighboring
elements. Operations ensure that such relative ranks are properly adjusted whenever an element is
inserted into or removed from a relatively ordered container. Grouping lists implement the Buddy
algorithm and are mostly used to implement memory allocators.

Header
include/utility/list.h

Interface

template<typename T,
 typename El = List_Elements::Doubly_Linked<T> >
class List
{
public:
 typedef T Object_Type;
 typedef El Element;
 typedef List_Iterators::Bidirecional<El> Iterator;

public:
 List();

 bool empty();
 unsigned int size();

 Element * head();
 Element * tail();

 Iterator begin();
 Iterator end();

 void insert(Element * e) ;
 void insert_head(Element * e);
 void insert_tail(Element * e);
 Element * remove();
 Element * remove(Element * e);
 Element * remove_head();
 Element * remove_tail();
 Element * remove(const Object_Type * obj);

 Element * search(const Object_Type * obj);
};

template<typename T,
 typename R = List_Element_Rank,
 typename El = List_Elements::Doubly_Linked_Ordered<T, R>,
 bool relative = false>
class Ordered_List: public List<T, El>
{
public:

https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Buddy_memory_allocation

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 77

 typedef T Object_Type;
 typedef R Rank_Type;
 typedef El Element;
 typedef List_Iterators::Bidirecional<El> Iterator;

public:
 Ordered_List();

 using Base::empty;
 using Base::size;

 using Base::head;
 using Base::tail;

 using Base::begin;
 using Base::end;
 void insert(Element * e);

 Element * remove();
 Element * remove(Element * e);
 using Base::remove_head;
 using Base::remove_tail;
 Element * remove(const Object_Type * obj);
 Element * remove_rank(const Rank_Type & rank) ;
 using Base::search;
 Element * search_rank(const Rank_Type & rank);
};

template<typename T,
 typename R = List_Element_Rank,
 typename El = List_Elements::Doubly_Linked_Ordered<T, R> >
class Simple_Relative_List: public Ordered_List<T, R, El, true> {};

template<typename T,
 typename El = List_Elements::Doubly_Linked_Ordered<T> >
class Grouping_List: public List<T, El>
{
public:
 typedef T Object_Type;
 typedef El Element;
 typedef List_Iterators::Bidirecional<El> Iterator;

public:
 Grouping_List();

 using Base::empty;
 using Base::size;
 using Base::head;
 using Base::tail;
 using Base::begin;

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 78

 using Base::end;

 unsigned int grouped_size();

 void insert_merging(Element * e, Element ** m1, Element ** m2);

 Element * search_size(unsigned int s);
 Element * search_left(const Object_Type * obj) ;
 Element * search_decrementing(unsigned int s) ;
};

template<typename T,
 typename R = typename T::Criterion,
 typename El = List_Elements::Doubly_Linked_Scheduling<T, R> >
class Scheduling_List: private Ordered_List<T, R, El>
{
public:
 typedef T Object_Type;
 typedef R Rank_Type;
 typedef El Element;
 typedef typename Base::Iterator Iterator;

public:
 Scheduling_List();

 using Base::empty;
 using Base::size;
 using Base::head;
 using Base::tail;
 using Base::begin;
 using Base::end;

 Element * volatile & chosen();

 void insert(Element * e) ;
 Element * remove(Element * e);

 Element * choose() ;
 Element * choose_another();
 Element * choose(Element * e) ;
};

Types

template<typename T, typename El>
List
A doubly-linked List of objects to type T, which are linked using El.

template<typename T, typename R, typename El>
Ordered_List

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 79

A doubly-linked Ordered List of objects of type T, which are ranked by R and linked using El.

template<typename T, typename R, typename El>
Relative_List
A doubly-linked Relatively Ordered List of objects of type T, which are ranked by R and linked
using El.

template<typename T, typename El>
Grouping_List
A doubly-linked Grouping (Buddy) List of objects to type T, which are linked using El.

template<typename T, typename R, typename El>
Scheduling_List
A doubly-linked Scheduling List of objects of type T, which are ranked by R and linked using El.
Objects subject to scheduling must export a type +-Criterion+- compatible with those described
in section Scheduler.

template<typename T, typename El>
Simple_List
A singly-linked List of objects to type T, which are linked using El.

template<typename T, typename R, typename El>
Simple_Ordered_List
A singly-linked Ordered List of objects of type T, which are ranked by R and linked using El.

template<typename T, typename R, typename El>
Simple_Relative_List
A singly-linked Relatively Ordered List of objects of type T, which are ranked by R and linked
using El.

template<typename T, typename El>
Simple_Grouping_List
A singly-linked Grouping (Buddy) List of objects to type T, which are linked using El.

Common Type Exports
Object_Type
An alias for the type of the objects stored in the container.
Rank_Type
An alias for the type of the Rank of the objects stored in the container. It is only defined
for Ordered containers.
Element
An alias for the container's Element.

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 80

Iterator
An alias for the container's Iterator.

Methods

List()
Ordered_List()
Relative_List()
Grouping_List()
Scheduling_List()
Simple_List()
Simple_Ordered_List()
Simple_Relative_List()
Simple_Grouping_List()
Creates a list.

bool empty()
Returns true if the list is empty and false otherwise.

unsigned int size()
Returns the number of elements in the list.

Element * head()
Returns the first element of the list.

Element * tail()
Returns the last element of the list.

Iterator begin()
Returns an iterator to the first element of the list.

Iterator end()
Returns an iterator to the last element of the list.

void insert(Element * e)
Inserts element e in the list. For unordered lists, insertion is performed at the tail. For ordered
lists, the position is determined by e->rank(). The method is not defined for grouping lists.

void insert_head(Element * e)
Inserts element e in the list's head. It is not defined for ordered and grouping lists.

void insert_tail(Element * e)
Inserts element e in the list's tail. It is not defined for ordered and grouping lists.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 81

Element * remove()
Removes the element at the list's head and returns a pointer to it. If the list is empty, returns 0.
It is not defined for grouping lists.

Element * remove(Element * e)
Removes element e from the list and returns a pointer to it. For relatively ordered lists, the
ranks of neighbor elements are adjusted accordingly.
Note: removing an Element that is not in the list with this method will probably corrupt the last
container it was on. This is a fast method to be used inside the OS. Applications will more likely
use Element * remove(const Object_Type * obj).

Element * remove_head()
Removes the element at the list's head and returns a pointer to it. If the list is empty, returns 0.
It is not defined for grouping lists.

Element * remove_tail()
Removes the element at the list's tail and returns a pointer to it. If the list is empty, returns 0. It
is not defined for grouping lists.

Element * remove(const Object_Type * obj)
Searches the list for an element containing the object pointed by obj. If found, removes that
element from the list and returns a pointer to it, otherwise returns 0. For relatively ordered lists,
the ranks of neighbor elements are adjusted accordingly.
Note: trying to remove an object that is not in the list with this method is harmless; 0 is
returned in this case.

Element * remove_rank(int rank)
Searches the list for the first element whose rank is rank. If found, removes that element from
the list and returns a pointer to it, otherwise returns 0. For relatively ordered lists, the ranks of
neighbor elements are adjusted accordingly.
Note: trying to remove an object that is not in the list with this method is harmless; 0 is
returned in this case.

Element * search(const Object_Type * obj)
Searches the list for an element containing the object pointed by obj. If found, returns a pointer
to it, otherwise returns 0.

Element * search_rank(int rank)
Returns a pointer to the first element in the list whose rank is rank or 0 if there is no element in
the list with that rank. This method is only defined for ordered lists.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 82

unsigned int grouped_size()
For grouping lists, returns the sum of all the resource sets stored in the list, that is, the sum of
the return value of method size() applied to each element in the grouping list. This method is
not defined for other kinds of list.

Element * search_size(unsigned int s)
For grouping lists, searches for the first element in the list whose size is equal to or larger than
s. If found, returns a pointer to it, otherwise returns 0. This method is not defined for other
kinds of list.

void insert_merging(Element * e, Element ** m1, Element ** m2)
Inserts element e in the grouping list. If the insertion does not cause mergers, then output
parameters m1 and m2 are set to 0. Conversely, if the insertion causes a merger with an
adjacent element, that element is removed from the list and its size is incorporated by e. On
the adjacency with a preceding element (i.e. an element whose object pointer is less than
e->object()) , -+m1 is updated with a pointer to that element and the object pointer in the
element being inserted is adjusted accordingly (-+e->object(m1->object())+-). On the
adjacency with a following element, m2 is updated with a pointer to that element. This method
is not defined for other kinds of list.
Note: if m1 and m2 were dynamically allocated somewhere else, deleting them is up to who
allocated them.

Element * search_decrementing(unsigned int s)
For grouping lists, searches for the first element in the list whose size is equal to or larger than
s. If found, returns a pointer to it and decrements its size by s, otherwise returns 0. This
method is not defined for other kinds of list.
Note: for performance reasons, this method uses first-fit, while the traditional Buddy Allocator
uses best-fit.

Element * volatile & chosen()
For scheduling lists, returns a reference to a volatile pointer to the element currently chosen.
This method is not defined for other kinds of list.

Element * choose()
For scheduling lists, applies the Criterion in force (see Scheduler) to select an element that
will figure as the new chosen and returns a pointer to that element. This method is not defined
for other kinds of list.

Element * choose_another()
For scheduling lists, applies the Criterion in force (see Scheduler) to select an element that
will figure as the new chosen and returns a pointer to that element. The element currently
chosen is excluded from the selection, so even if the criteria would elect it, another element will

https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 83

be returned. This method is not defined for other kinds of list.

Element * choose(Element * e)
For scheduling lists, ignores the Criterion in force (see Scheduler) and select e as the new
chosen. The method returns a pointer to the new chosen element (most likely e). This method
is not defined for other kinds of list.

4.7.1.5. Queue

A Queue is just a wrapper to a List that is able to make the operation on that List atomic through the
use of a Spin Lock. Its interface is that of a Scheduling_List.
Examples

4.7.1.6. Hash

EPOS provides two implementations of Hast Tables. The first, Simple Hash, handles collisions by
putting all synonyms in the same singly-linked ordered list. That is, it is implemented with a Vector
plus a List of synonyms. The second, named just Hash, handles collisions by putting synonyms on
separate lists, one for each Key. It is implemented as a Vector of Lists. The type used as Key is
required to implement operator%().

Header
include/hash.h

Interface

template<typename T, unsigned int SIZE, typename Key = int>
class Simple_Hash
{
public:
 typedef T Object_Type;
 typedef Key Rank_Type;
 typedef typename List_Elements::Singly_Linked_Ordered<T, Key> Element;

 class Forward;
 typedef Forward Iterator;

public:
 Simple_Hash();

 Iterator begin();
 Iterator end();

 bool empty();
 unsigned int size();
 void insert(Element * e) ;

 Element * remove(Element * e);
 Element * remove(const Object_Type * obj);
 Element * remove_key(const Key & key);

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Spin%20Lock

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 84

 Element * search(const Object_Type * obj) ;
 Element * search_key(const Key & key);
};

template<typename T,
 unsigned int SIZE,
 typename Key = int,
 typename El = List_Elements::Singly_Linked_Ordered<T, Key>,
 typename L = Simple_Ordered_List<T, Key, El> >
class Hash
{
public:
 typedef T Object_Type;
 typedef El Element;
 typedef L List;

public:
 Hash();

 Iterator begin();
 Iterator end();

 bool empty();
 unsigned int size();

 void insert(Element * e) ;
 Element * remove(Element * e) ;
 Element * remove(const Object_Type * obj);
 Element * remove_key(const Key & key);
 Element * search(const Object_Type * obj);
 Element * search_key(const Key & key);

 List * operator[](const Key & key) ;
};

Methods

Hash()
Simple_Hash()
Creates a hash table.

Iterator begin()
Returns an iterator to the first element in the hash table.

Iterator end()
Returns an iterator to the last element in the hash table.

bool empty()

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 85

Returns true if the hash table is empty and false otherwise.

unsigned int size()
Returns the number of elements in the hash table.

void insert(Element * e)
Inserts element e in the hash table.

Element * remove(Element * e)
Removes element e from the hash table and returns a pointer to it.
Note: removing an Element that is not in the table with this method will probably corrupt the
last container it was on. This is a fast method to be used inside the OS. Applications will more
likely use Element * remove(const Object_Type * obj).

Element * remove(const Object_Type * obj)
Searches the hash table for an element containing the object pointed by obj. If found, removes
that element from the table and returns a pointer to it, otherwise returns 0.
Note: trying to remove an object that is not in the list with this method is harmless; 0 is
returned in this case.

Element * remove_key(const Key & key)
Searches the hash table for the first element whose key is key. If found, removes that element
from the table and returns a pointer to it, otherwise returns 0.
Note: trying to remove an object that is not in the table with this method is harmless; 0 is
returned in this case.

Element * search(const Object_Type * obj)
Searches the hash table for an element containing the object pointed by obj. If found, returns a
pointer to it, otherwise returns 0.

Element * search_key(const Key & key)
Returns a pointer to the first element in the hash table whose key is key or 0 if there is no
element in the table by that key.

Examples

4.7.2. OStream
EPOS provides an Output Stream similar to that in the C++ Standard Library. Applications can print
formatted data on the standard output stream using operator<<().

Header
include/utility/ostream.h

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 86

Interface

class OStream
{
public:
 struct Begl {};
 struct Endl {};
 struct Hex {};
 struct Dec {};
 struct Oct {};
 struct Bin {};
 struct Err {};

public:
 OStream();

 OStream & operator<<(const Begl & begl);
 OStream & operator<<(const Endl & endl);
 OStream & operator<<(const Hex & hex);
 OStream & operator<<(const Dec & dec);
 OStream & operator<<(const Oct & oct);
 OStream & operator<<(const Bin & bin);
 OStream & operator<<(const Err & err);

 OStream & operator<<(char c);
 OStream & operator<<(unsigned char c);

 OStream & operator<<(int i);
 OStream & operator<<(short s);
 OStream & operator<<(long l);
 OStream & operator<<(unsigned int u);
 OStream & operator<<(unsigned short s);
 OStream & operator<<(unsigned long l);
 OStream & operator<<(long long int u);
 OStream & operator<<(unsigned long long int u);
 OStream & operator<<(const void * p);
 OStream & operator<<(const char * s);
 OStream & operator<<(float f);
};

extern OStream::Begl begl;
extern OStream::Endl endl;
extern OStream::Hex hex;
extern OStream::Dec dec;
extern OStream::Oct oct;
extern OStream::Bin bin;

Types

Begl

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 87

Marks the beginning of a segment of the stream (ended by Endl) that is to be atomically output
on multicore configurations.

Endl
Encapsulates a \n delimiter besides marking the end of a segment of the stream (started by
Begl) that is to be atomically output on multicore configurations.

Hex
Selects hexadecimal mode for the output of integer numbers.

Dec
Selects decimal mode for the output of integer numbers.

Oct
Selects octal mode for the output of integer numbers.

Bin
Selects binary mode for the output of integer numbers.

Err
Signalizes an error to the operating system. Besides producing a log message, usually causes a
Thread abort.

Methods

OStream()
Creates an OStream object.

OStream & operator<<(...)
Converts the argument to a string and pushes it into the stream.

Examples

4.7.3. Random
EPOS provides a Pseudorandom Number Generator based on the linear congruential generator.
Whenever the machine features devices that can be used to produce enough entropy, such as ADC
converters and RF transceivers, the algorithm is fed with a really random seed and therefore becomes
a true Random Number Generator.

Header
include/utility/random.h

Interface

https://en.wikipedia.org/wiki/Random_number_generation

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 88

class Random
{
public:
 static int random();
};

Methods

int random()
Returns a random (or pseudo-random) integral number.

Examples

4.7.4. CRC
EPOS provides Cyclic Redundancy Check (CRC) functions to calculate check of 8, 16, 32, and 64 bits.

Header
include/utility/crc.h

Interface

class CRC
{
public:
 static unsigned char crc8(char * ptr, int size);
 static unsigned short crc16(char * ptr, int size);
 static unsigned long crc32(char * ptr, int size);
 static unsigned long long crc64(char * ptr, int size);
};

Methods

unsigned short crc8(char * ptr, int size)
Calculates the CRC8 of the data given by (ptr+, -+size).

unsigned short crc16(char * ptr, int size)
Calculates the CRC16 of the data given by (ptr+, -+size).

unsigned short crc32(char * ptr, int size)
Calculates the CRC32 of the data given by (ptr+, -+size).

unsigned short crc64(char * ptr, int size)
Calculates the CRC64 of the data given by (ptr+, -+size).

Examples

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 89

4.7.5. Spinlock
EPOS provides Spinlocks for busy waiting synchronization. This utility is meant to be used inside the
system. Applications are more likely to use Synchronization abstractions.

Header
include/utility/spin.h

Interface

class Spin
{
public:
 Spin();

 void acquire();
 void release();
};

Methods

Spin()
Creates a Spinlock.

void acquire()
Spins in a busy waiting loop until the Spinlock gets available, atomically acquiring it.

void release()
Releases the Spinlock.

Examples

4.7.6. Observer
EPOS provides a set of implementations for the Observer design pattern. Observers can be attached
to Observed objects to get notification about changes in its state through invocations of update().

4.7.6.1. Observer/Observed

This is the traditional design pattern.

Header
include/utility/observer.h

Interface

class Observer;
class Observed
{
public:

https://en.wikipedia.org/wiki/Spinlock
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Process_Coordination_Synchronizers_
https://en.wikipedia.org/wiki/Observer_pattern

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 90

 Observed();
 ~Observed();

 virtual void attach(Observer * o);
 virtual void detach(Observer * o);
 virtual bool notify();
};

class Observer
{
protected:
 Observer();

public:
 ~Observer();

 virtual void update(Observed * o) = 0;
};

Methods

Observed()
Creates an Observed object.

~Observed()
Destroys an Observed object, detaching all Observers.

void attach(Observer * o)
Attaches Observer o to get notifications about this Observed object.

void detach(Observer * o)
Detaches Observer o from this Observed object, so it won't get notified anymore.

void notify()
Notifies all attached Observers, calling their update() method.

Observer()
Creates an Observer object.

~Observer()
Destroys an Observer object.

void update(Observed * o)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 91

4.7.6.2. Conditional Observer x Conditionally Observed

This utility is similar to the traditional design pattern, but Conditional Observers are only notified
about Conditionally Observed objects matching a given condition.

Header
include/utility/observer.h

Interface

template<typename T = int>
class Conditional_Observer;

template<typename T = int>
class Conditionally_Observed
{
public:
 typedef T Observing_Condition;

public:
 Conditionally_Observed();
 ~Conditionally_Observed();

 virtual void attach(Conditional_Observer<T> * o, T c);
 virtual void detach(Conditional_Observer<T> * o, T c);
 virtual bool notify(T c);
};

template<typename T>
class Conditional_Observer
{
public:
 typedef T Observing_Condition;

protected:
 Conditional_Observer();

public:
 ~Conditional_Observer();
 virtual void update(Conditionally_Observed<T> * o, T c) = 0;
};

Methods

Conditionally_Observed()
Creates a Conditionally Observed object.

~Conditionally_Observed()
Destroys a Conditionally Observed object.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 92

void attach(Conditional_Observer<T> * o, T c)
Attaches Observer o to get notifications about this Observed object whenever the condition c
matches.

void detach(Conditional_Observer<T> * o, T c)
Detaches Observer o from this Observed object on condition c.

void notify(T c)
Notifies all Observers attached on condition c, calling their update() method.

Conditional_Observer()
Creates a Conditional Observer object.

~Conditional_Observer()
Destroys a Conditional Observer object.

void update(Conditionally_Observed<T> * o, T c)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o whenever c matches.

4.7.6.3. Unconditional Observer x Unconditionally Observed with Data

This utility is similar to the traditional design pattern, but Observers get a pointer to data from
''Observed' objects at each notification.

Header
include/utility/observer.h

Interface

template<typename T1>
class Data_Observed<T1, void>
{
public:
 typedef T1 Observed_Data;

public:
 Data_Observed();
 ~Data_Observed();

 virtual void attach(Data_Observer<T1, void> * o);
 virtual void detach(Data_Observer<T1, void> * o);
 virtual bool notify(T1 * d) ;
};

template<typename T1>

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 93

class Data_Observer<T1, void>
{
public:
 typedef T1 Observed_Data;

protected:
 Data_Observer();

public:
 ~Data_Observer();

 virtual void update(Data_Observed<T1, void> * o, T1 * d) = 0;
};

Methods

Data_Observed()
Creates an Observed object.

~Data_Observed()
Destroys an Observed object, detaching all Observers.

void attach(Data_Observer<T1, void> * o)
Attaches Observer o to get notifications about this Observed object.

void detach(Data_Observer<T1, void> * o)
Detaches Observer o from this Observed object, so it won't get notified anymore.

void notify(T1 * d)
Notifies all attached Observers, calling their update(T1 * d) method passing a pointer to the
piece of data within the Observed object.

Data_Observer()
Creates an Observer object.

~Data_Observer()
Destroys an Observer object.

void update(Data_Observed<T1, void> * o, T1 * d)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o. A pointer to the piece of data within the Observed object is
passed through d.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 94

4.7.6.4. Conditional Observer x Conditionally Observed with Data

This utility combines the Conditional and Data Observer patterns. Observers get a pointer to data
from ''Observed' objects whenever a condition is matched.

Header
include/utility/observer.h

Interface

template<typename T1, typename T2 = void>
class Data_Observer;

template<typename T1, typename T2 = void>
class Data_Observed
{
public:
 typedef T1 Observed_Data;
 typedef T2 Observing_Condition;

public:
 Data_Observed();

 ~Data_Observed();

 virtual void attach(Data_Observer<T1, T2> * o, T2 c);
 virtual void detach(Data_Observer<T1, T2> * o, T2 c);
 virtual bool notify(T2 c, T1 * d);
};

template<typename T1, typename T2>
class Data_Observer
{
public:
 typedef T1 Observed_Data;
 typedef T2 Observing_Condition;

protected:
 Data_Observer();

public:
 ~Data_Observer();

 virtual void update(Data_Observed<T1, T2> * o, T2 c, T1 * d) = 0;
};

Methods

Data_Observed()
Creates an Observed object.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 95

~Data_Observed()
Destroys an Observed object, detaching all Observers.

void attach(Data_Observer<T1, T2> * o, T2 c)
Attaches Observer o to get notifications about this Observed object whenever c matches.

void detach(Data_Observer<T1, T2> * o, T2 c)
Detaches Observer o from this Observed object on condition c.

void notify(T2 c, T1 * d)
Notifies all Observers attached on condition c, calling their update(Data_Observed<T1, T2> *
o, T2 c, T1 * d) method passing a pointer to the piece of data within the Observed object
through d.

Data_Observer()
Creates an Observer object.

~Data_Observer()
Destroys an Observer object.

-+void update(Data_Observed<T1, T2> * o, T2 c, T1 * d)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o whenever c matches. A pointer to the piece of data within the
Observed object is passed through d.

Examples

4.7.7. Handler

EPOS allows application processes to handle events at user-level through the Handler family of
abstractions. Handlers can be time-triggered by Alarm or event-driven by interrupts. It is important to
notice that Semaphore is the only handler with memory, so delayed events are not lost. Therefore, it
is the right option for most of the events handled at user-level.

Header
include/utility/handler.h

Interface

class Handler
{
public:

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Alarm

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 96

 typedef void (Function)();

public:
 Handler();
 virtual ~Handler();

 virtual void operator()() = 0;
};

class Function_Handler: public Handler
{
public:
 Function_Handler(Function * h);
 ~Function_Handler();

 void operator()(); // h();
};

template<typename T>
class Functor_Handler: public Handler
{
public:
 typedef void (Functor)(T *);

 Functor_Handler(Functor * h, T * o);
 ~Functor_Handler();

 void operator()(); // h(o);
};

class Thread_Handler : public Handler
{
public:
 Thread_Handler(Thread * h);
 ~Thread_Handler();

 void operator()(); // h->resume();
};

class Semaphore_Handler: public Handler
{
public:
 Semaphore_Handler(Semaphore * h);
 ~Semaphore_Handler();

 void operator()(); // h->v();
};

class Mutex_Handler: public Handler
{

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 97

public:
 Mutex_Handler(Mutex * h);
 ~Mutex_Handler();

 void operator()(); // h->unlock();
};

class Condition_Handler: public Handler
{
public:
 Condition_Handler(Condition * h);
 ~Condition_Handler();

 void operator()(); // h->signal();
};

Methods

Function_Handler(Function * h)
Functor_Handler(Functor * h, T * o)
Thread_Handler(Thread * h)
Semaphore_Handler(Semaphore * h)
Mutex_Handler(Mutex * h)
Condition_Handler(Condition * h)
Creates a handler on object h.

~Function_Handler()
~Functor_Handler()
~Thread_Handler()
~Semaphore_Handler()
~Mutex_Handler()
~Condition_Handler()
Destroys the handler.

void operator()()
The call operator is used to invoke the Handler. As a pure virtual method in the base class, it
must be defined for each kind of Handler.

For Function_Handler, it calls the function given by h.
For Functor_Handler, it calls the functor h on object o.
For Thread_Handler, it calls resume() on the Thread given by h.
For Semaphore_Handler, it calls v() on the Semaphore given by h.
For Mutex_Handler, it calls unlock() on the Mutex given by h.
For Condition_Handler, it calls signal() on the Condition Variable given by h.

Examples

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 98

4.7.8. Buffer (Zero-Copy)
Header
include/utility/buffer.h

Interface

template<typename Owner, typename Data, typename Shadow = void, typename Metadata =
Dummy>
class Buffer: private Data, public Metadata
{
public:
 typedef Simple_List<Buffer<Owner, Data, Shadow, Metadata> > List;
 typedef typename List::Element Element;

public:
 Buffer(Shadow * s);

 Buffer(Owner * o, unsigned int s);
 template<typename ... Tn>
 Buffer(Owner * o, unsigned int s, Tn ... an);
 Data * data();
 Data * frame();
 Data * message();

 bool lock();
 void unlock();

 Owner * owner() const;
 Owner * nic() const;
 void owner(Owner * o);
 void nic(Owner * o);

 Shadow * shadow() const;
 Shadow * back() const;

 unsigned int size() const;
 void size(unsigned int s);

 Element * link1();
 Element * link();
 Element * lint();
 Element * link2();
 Element * lext();

 friend Debug & operator<<(Debug & db, const Buffer & b);
};

Methods

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 99

Examples

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 100

4.8. Hardware Mediators

4.8.1. CPU

The CPU mediator is responsible for abstracting types and behavior of CPU components.

Generic implementations of CPU interface are provided by CPU_Common. Architecture-specifc
implementations are provided by each architecture's CPU mediator (e.g., IA32_CPU, AVR8_CPU, etc).

The CPU mediator also defines two important types (Log_Addr and Phy_Addr) to abstract,
respectively, logical and physical addresses. Such types, being classes, also implements a set of
constructors and operators to enable proper handling of such abstractions.

Below is a class diagram for this interface.

Methods

static void halt()
This function is reimplemented in the CPU mediators of architectures providing better ways to
halt a CPU. A basic implementation in CPU_Common halts the processor by entering a perpetual
loop (for(;;);).

Note: this default implementation is a "no return" point. Specific implementations should rely in
hardware resources such as sleep modes to allow the system to come back from a halt.

static bool tsl(volatile bool & lock)
This function is reimplemented in the CPU mediators of architectures providing better ways to
guarantee an atomic register value change. A basic implementation in CPU_Common uses C
code to change a boolean value, which is not guaranteed to be atomic.

static int finc(volatile int & number)
This function is reimplemented in the CPU mediators of architectures providing better ways to
guarantee an atomic register value increment. A basic implementation in CPU_Common uses C
code to increment an integer value, which is not guaranteed to be atomic.

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 101

static int fdec(volatile int & number)
This function is reimplemented in the CPU mediators of architectures providing better ways to
guarantee an atomic register value decrement. A basic implementation in CPU_Common uses C
code to decrement an integer value, which is not guaranteed to be atomic.

4.8.2. MMU
The MMU is a hardware mediator responsible for abstracting memory management and memory
protection from the hardware. It's generally abstract the Memory Management Unit (MMU) of the
target architecture, or provide a software implementation for this functions. The class diagram below
shows the hierarchy of the low level memory abstractions.

More information can be found in EPOS Developer's Guide.

4.8.3. TSC

The Time Stamp Counter (TSC) is responsible for counting CPU ticks. If a given platform does not
feature a hardware TSC, its functionality may be emulated by an ordinary periodic timer. Basically,
the TSC API is formed by the Hertz frequency() and Time_Stamp time_stamp() methods. The first
returns the TSC or timer frequency. The second, returns the current number of ticks.

Methods

Hertz frequency()

Time_Stamp time_stamp()

Types

typedef unsigned long Hertz
typedef unsigned long long Time_Stamp

4.8.4. Machine

The Machine mediator is responsible for abstracting target platform. It also provides a set of class
methods that implement machine-related functions (e.g.: panic, reboot, power off, etc).

Generic implementations of Machine interface are provided by Machine_Common. Machine-specific
implementations are provided by each machine's Machine mediator (e.g., PC, ATMega128, Plasma,
etc).

The Machine mediator also defines the io map (Machine::IO), a structure responsible for abstracting
each platform I/O address space.

Methods

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 102

static void delay(const RTC::Mircrossecond & time)

static void panic()
This function should be called by the operating system when it "doesn't know" how to revert an
error state. When called, it stops all system activities in order to avoid a greater damage.

Note: calling panic() is a "no return" point, i.e., there's no way to recover from a panic state but
rebooting the system.

static void reboot()
When called, this function causes the system to be shut down and rebooted.

static void poweroff()
When called, this function causes the system to be shutdown.

static unsigned int n_cpus()
This function returns the number of CPUs present in the current platform (to be used in SMP
configurations). Returns 1 when no SMP configuration is available.

static unsigned int cpu_id()
This function returns the ID of the CPU in which the code is currently running (to be used in SMP
configurations). Returns 1 when no SMP configuration is available.

static void smp_init(unsigned int n_cpus)
This functions initializes a SMP configuration (when available).

static void smp_barrier(int n_cpus)
This functions implements a barrier to enforce synchronization of all CPUs.

static void init()
This function is called at system startup and is responsible to configure the platform and get the
system ready to start other components initialization.

4.8.5. IC

The IC mediator is responsible for abstracting the target platform's scheme/hardware for handling
interrupts/exceptions (referred to only as "interrupts" in the remaining of the text). It also provides a
set of methods enable/disable interrupts and to assign interrupt handlers.

Below are the signatures for the component's interface methods. Interrupt_Id is an enumeration of
the available interrupt request queues (IRQs), and is defined for each implementation of the IC
mediator. Interrupt_Handler is the following function typedef:

http://en.wikipedia.org/wiki/Barrier_%28computer_science%29

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 103

typedef void (* Interrupt_Handler)();

That means that an interrupt handler should be a method with the following signature:

void handler();

Methods

static void int_vector(Interrupt_Id irq, Interrupt_Handler handler)
This method maps handler to a given IRQ.

static void enable(Interrupt_Id irq)
Enables interrupts for a given IRQ.

static void disable()
Disables all interrupts.

static void disable(Interrupt_Id irq)
Disables interrupts for a given IRQ.

4.8.6. RTC

The RTC family of mediators is responsible for keeping track of current time. It defines two types, as
shown below, Microsecond and Second.
RTC Types

typedef unsigned long Microsecond
typedef unsigned long Second

The RTC API is depicted in the Figure below. It has an inner class Date that defines a date structure
composed by the year (_Y), month (_M), day (_D), hours (_h), minutes (_m), and seconds (_s),
representing a Date.

Date Types

unsigned int _Y
unsigned int _M
unsigned int _D
unsigned int _h
unsigned int _m
unsigned int _s

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 104

RTC Methods

RTC()
Constructs an RTC object.

Date date()
Returns a Date object that contains the current date.

void date(const Date & d)
Sets a date received by argument.

Second seconds_since_epoch()
Returns the number of seconds since an EPOCH. The EPOCH is defined in the Machine Traits.
For instance, Traits<PC_RTC>::EPOCH_DAYS.

Date Methods

Date()
Date(unsigned int _Y, unsigned int _M, unsigned int _D, unsigned int _h,
unsigned int _m, unsigned int _s)
unsigned int year()
unsigned int month()
unsigned int day()
unsigned int hour()
unsigned int minute()
unsigned int second()
void operator <<

4.8.7. Timers

The Timer family of mediators is responsible for counting time. Based on a given and configurable
frequency, the timer will increment or decrement a counter until it reaches zero or a pre-defined
value. When this happens, an interrupt is generated and the event is handled by the specific timer
interrupt handler. Each machine timer can be configured (its frequency) in its Traits class. The EPOS
Timer family of mediators defines three types as shown below:

Types

typedef TSC::Hertz Hertz
typedef TSC::Hertz Tick
typedef Handler::Function Handler

There are some differences between the timers of each architecture, but the common API is

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 105

presented below.

Methods

void enable()
Enables the timer by turning on the timer interrupt.

void disable()
Disables the timer by turning off the timer interrupt.

Hertz frequency()
Returns the current timer frequency.

void frequency(Hertz & f)
Sets the timer frequency to f.

void reset()
Resets the timer counter.

Tick read()
Reads the current timer counter value.

int init()
Initializes the timer. This method must only be called by the system during the system
bootstrapping.

PC Timer API

The PC machine has only one Timer, named Timer. The Scheduler_Timer, Alarm_Timer, and user-
defined Timers are multiplexed transparently by Timer.

Timer(const Hertz & frequency, const Handler * handler, const Channel & channel, bool
retrigger)
Creates a Timer with frequency, associates its handler to handler, defines if it will be retrigger or
not, and sets its channel. The channel can be SCHEDULER or ALARM.

4.8.8. UART

UART (Universal Asynchronous Receiver/Transmitter) is used for serial communication over a
peripheral device serial port. The UART API in EPOS is presented below.

Methods

http://en.wikipedia.org/wiki/UART

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 106

UART(unsigned int unit = 0)
Creates a UART object. The unit defines which hardware device is being used. By default, the
first device is chosen.

UART(unsigned int baud, unsigned int data_bits, unsigned int parity, unsigned
int stop_bits, unsigned int unit = 0)
Creates an UART object with the baud rate (baud), data bits number (data_bits), parity bits
numere (parity), stop bis number (stop_bits), and unit (by default 0).

void config(unsigned int baud, unsigned int data_bits, unsigned int parity,
unsigned int stop_bits)
Configure an UART with the baud rate (baud), data bits number (data_bits), parity bits number
(parit), and stop bits number (''stop_bits').

void config(unsigned int * baud, unsigned int * data_bits, unsigned int *
parity, unsigned int * stop_bits)
Configure an UART with the baud rate (*baud), data bits number (*data_bits), parity bits number
(*parity), and stop bits number (*stop_bits).

char get()
Gets a byte from a UART device. The method will wait until the data is ready.

void put(char c)
Sends a byte (c) to a UART device. The method will wait until the data is transferred.

4.8.8.1. Example

// EPOS PC UART Mediator Test Program

#include <utility/ostream.h>
#include <uart.h>

using namespace EPOS;

int main()
{
 OStream cout;

 cout << "PC_UART test\n" << endl;

 PC_UART uart(115200, 8, 0, 1);

 cout << "Loopback transmission test (conf = 115200 8N1):";
 uart.loopback(true);

 for(int i = 0; i < 256; i++) {

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 107

 uart.put(i);
 int c = uart.get();
 if(c != i)
 cout << " failed (" << c << ", should be " << i << ")!" << endl;
 }
 cout << " passed!" << endl;

 cout << "Link transmission test (conf = 9200 8N1):";
 uart.config(9600, 8, 0, 1);
 uart.loopback(false);

 for(int i = 0; i < 256; i++) {
 uart.put(i);
 for(int j = 0; j < 0xffffff; j++);
 int c = uart.get();
 if(c != i)
 cout << " failed (" << c << ", should be " << i << ")!" << endl;
 }
 cout << " passed!" << endl;
 return 0;
}

4.8.9. NIC
The Network Interface Card (NIC) family of hardware mediators provides access to network interface
cards. All NIC devices implement the minimal interface specified bellow:

NIC(unsigned int unit=0)
Specifies the unit to be instantiated based on the order defined in System: :Traits:
:‹Machine_NIC›::NICS.

~NIC()
Destructs a NIC previously created. It deallocates all memory used by the NIC.

int send(const Address, const Protocol &prot, const void *data, unsigned int
size)
Sends size bytes of data to dst with protocol prot.

int receive(Address *src, Protocol *prot, void *data, unsigned int size)
Receives size bytes of data, src and prot are set by the method accordingly.

void reset()
Resets the NIC device.

unsigned int mtu()
Returns the device mtu (Maximum Transmission Unit).

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 108

const Address address()
Returns the device address.

const Statistics statistics()
Returns the NIC Statistics (which provides transmission and reception statistics).

4.8.10. Radio

The Low Power Radio family describes a set of methods and structures common for MAC (Medium
Access Control) protocols for low-power radios. This includes packet format, the addressing word size,
a structure for storing transmission statistics, and methods for sending and receiving data frames.

4.8.11. EEPROM

EEPROMs (Electrically-Erasable Programmable Read-Only Memory) are non-volatile storage device. An
EEPROM has a high read/write latency and is not area-efficient, so it's commonly used to store small
configuration data. EEPROMs also have a limited life - that is, the number of times it can be
reprogrammed is limited to tens or hundreds of thousands of times. Below is shown the public
interface for the EEPROM mediator.

Methods

unsigned char read(const Address & a)
Reads and returns the byte stored at address a

void write(const Address & a, unsigned char d)
Reprograms the EEPROM. Writes byte d at address a

int size()
Returns the EEPROM size

THIS MUST BE RELOCATED

$EPOS/include/machine/$MACH/memory_map.h

template<>
struct Memory_Map<PC>

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 109

{
 // Physical Memory
 enum {
 MEM_BASE = Traits<PC>::MEM_BASE,
 MEM_TOP = Traits<PC>::MEM_TOP
 };

 // Logical Address Space
 enum {
 APP_LOW = Traits<PC>::APP_LOW,
 APP_CODE = Traits<PC>::APP_CODE,
 APP_DATA = Traits<PC>::APP_DATA,
 APP_HIGH = Traits<PC>::APP_HIGH,

 PHY_MEM = Traits<PC>::PHY_MEM,
 IO = Traits<PC>::IO_BASE,
 APIC = IO,
 VGA = IO + 4 * 1024,
 PCI = IO + Traits<PC_Display>::FRAME_BUFFER_SIZE,

 SYS = Traits<PC>::SYS,
 IDT = SYS + 0x00000000,
 GDT = SYS + 0x00001000,
 SYS_PT = SYS + 0x00002000,
 SYS_PD = SYS + 0x00003000,
 SYS_INFO = SYS + 0x00004000,
 TSS0 = SYS + 0x00005000,
 SYS_CODE = SYS + 0x00300000,
 SYS_DATA = SYS + 0x00340000,
 SYS_STACK = SYS + 0x003c0000,
 SYS_HEAP = SYS + 0x00400000
 };
};

For a detailed explanation about the meaning of the above constants, please refer to the EPOS
Developer's guide.

When tasks are being used, the Address_Space abstraction is used to abstracts the memory
segments that belong to the address space of a task. Its public interface is described below. For more
information see the Task and MMU abstraction.

Review Log
Ver Date Authors Main Changes

1.0 Apr 4, 2016 Rodrigo Meurer Import and cleanup from EPOS 1 documentation;
Substitution of JPEG UML images by textual class interfaces

http://epos.lisha.ufsc.br/EPOS+User+Guide#Task
http://epos.lisha.ufsc.br/EPOS+User+Guide#MMU

EPOS 2 User Guide Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 25/04/2024 110

1.1 Apr 10, 2016 Guto Fröhlich Major review

1.2 Mai 12, 2016 Guto Fröhlich Added section on SmartData

1.3 Mai 14, 2016 Guto Fröhlich Utilities classes rewritten

1.4 Feb 24, 2020 Guto Fröhlich Major 2.2 review

1.5 Aug 2x, 2023 José Hoffmann WiP: Updating Digital Units and adding MultiSmartData

	EPOS 2.2 User Guide
	[Table of contents]
	Table of contents

	1. Introduction
	1.1. EPOS Overview
	1.2. OpenEPOS License
	1.3. Main Features

	2. Setting up EPOS
	2.1. Downloading EPOS
	2.2. Downloading the toolchain
	2.2.1. GCC
	2.2.2. as86/ld86
	2.2.3. 32-bit libs

	2.3. Installing

	3. Running EPOS
	3.1. Compiling
	3.2. Running
	3.2.1. Running on Bare Metal
	3.2.2. Running on Virtualized Host

	3.3. Conﬁguring

	4. EPOS API
	4.1. Memory Management
	4.1.1. Dynamic Memory (Heap)
	4.1.2. Stacks
	4.1.3. Memory Segments
	4.1.4. Address Spaces

	4.2. Process Management
	4.2.1. Task
	4.2.2. Thread
	4.2.3. RT_Thread
	4.2.4. Scheduler

	4.3. Process Coordination (Synchronizers)
	4.3.1. Semaphore
	4.3.2. Mutex
	4.3.3. Condition

	4.4. Timing
	4.4.1. Clock
	4.4.2. Chronometer
	4.4.3. Alarm
	4.4.4. Delay

	4.5. Communication
	4.5.1. Link
	4.5.2. Port
	4.5.3. Mailbox
	4.5.4. Channel
	4.5.5. Network
	4.5.6. IPC
	4.5.7. TSTP
	4.5.8. TCP/IP
	4.5.9. Networking Conﬁguration

	4.6. Sensing and Actuation (Wireless Sensor Network)
	4.6.1. SmartData
	4.6.2. Unit
	4.6.3. Persistent Storage
	4.6.4. Transducers

	4.7. Utilities
	4.7.1. Containers
	4.7.2. OStream
	4.7.3. Random
	4.7.4. CRC
	4.7.5. Spinlock
	4.7.6. Observer
	4.7.7. Handler
	4.7.8. Buﬀer (Zero-Copy)

	4.8. Hardware Mediators
	4.8.1. CPU
	4.8.2. MMU
	4.8.3. TSC
	4.8.4. Machine
	4.8.5. IC
	4.8.6. RTC
	4.8.7. Timers
	4.8.8. UART
	4.8.9. NIC
	4.8.10. Radio
	4.8.11. EEPROM

	THIS MUST BE RELOCATED
	Review Log

