
Table of contents
1. Project
2. Members
3. About the project
4. Requirements

4.1 Non-Functional Requirements
4.1.1 Battery autonomy analysis

5. Model
5.1 Image processing (Program)

6. Model of Computation
7. References and used Resources

 

1. Project
Object Tracking with a Radio Controlled Quadcopter

2. Members
Julião Gessé Fernandes

3. About the project
The goal of this project is to implement a simple object tracking oriented by a predefinide color using the
images captured by a USB camera onboard a quadcopter. The main ideia is to use a Intel Edison (Figure
1) board to do the image processing and to command the movimentation of the quadcopter when is
necessary (general commands will received by a commercial radio control). The quadcopter will use the
MultiWii controller as stabilization system (Figure 2). In the Figure 3 you can see a high level block
diagram of the project.

Figure 1 - Intel Edison and the official Arduino Compatible Board

https://github.com/juliao
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://www.multiwii.com


 

Figure 2 - MultiWii SE v2.5 Controller

The quadcopter will be controlled mainly by the radio control, but at the same time, the tracking of an
object can be activated via a switch located at the radio control. The activation of this switch will be
acknowledged by the receiver, that will enable the en_track signal (ADC input) at the Intel Edison board.
Starting at this moment, the object tracking system at the Intel Edison board will seek a target of
predefined color in the current image captured by the camera. When a target have been acquired, the
track system will work to keep the target always in the center of the camera frame, this will be done
sending movimentation commands to the quadcopter through the MultiWii serial interface, using the
MultiWii Serial Protocol (MSP).

In this object tracking project, the camera will be installed under the quadcopter, capturing images of the
ground, so it can move left / right and forward / backward, maintaining a constant height.

 

http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol
http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol


Figure 3 - Blocks diagram

 

The movimentation of the quadcopter is done by changing the throttle applied to each one of the four
brushless motors, the throttle to each motor should be adequated for the desired movement, like you can
see in the Figure 4. This will be managed but the MultiWii controller board.

 

Figure 4 - Quadcopter states ("+" configuration). (a) Forward motion; (b) backwards motion; (c)
movement left; (d) movement right; (e) increase altitude; (f) decrease altitude; (g) leftwards rotation; (h)
rightwards rotation.



4. Requirements
Radio Controller (TX + RX) (Borrowed by LISHA)
MultiWii board (Borrowed by LISHA)
Quadcopter frame with brushless motors and ESCs (Borrowed by LISHA)
USB camera (To be acquired or borrowed by LISHA)
LiPo battery 11.1 Volts >25C >3000mAh (To be acquired or borrowed by LISHA)

Utilized components details:

4x Brushless motor A2830-11 1000KV RCTimer Outrunner
4x ESC SK-30A Simonk Firmware ESC BEC 5V/2A 2-4S LiPo RCTimer
4x Propeller 10x4.5 (two reversed)

4.1 Non-Functional Requirements
The Quadcopter's battery should provide enough power for the motors, MultiWii and the Intel Edison
board.
The battery should supply enough power for the Quadcopter for at least 10 minutes and save power
for landing if the battery is low (disabling the image processing function).
The camera images should have the adequate resolution to be processed in the Intel Edison board
(and/or the images could be optimized for performance by downscaling resolution if necessary).
The processing time between a camera frame and another should be of the order of milliseconds.
The response time to data received from MultiWii by Intel Edison board must be of the order of
milliseconds.
The Quadcopter must do smooth movements, because the camera is fixed (Note: Ideally, the camera
should be installed on a gimbal, so the inclination caused by the movement of the Quadcopter is
compensated and the camera keep the target on the frame).

4.1.1 Battery autonomy analysis
Components weight:

620g Quadcopter frame + 4 ESCs + 4 brushless motors
66g 4 Propeller with spinner (16,5g each)
11g MultiWii board
22g RX module
7g Intel Edison module
46g Intel Edison Arduino board
32g USB Camera
 
193g Battery 2800mAh 3S 35C
361g Battery 5000mAh 3S 30C
 
Just Intel Edison Kit + USB Camera: 85g
 
Quadcopter without battery: 804g
Quadcopter with 2800mAh battery: 997g
Quadcopter with 5000mAh battery: 1165g



5. Model
A simplified functional model was created in the Ptolemy II software, which can be seen in the Figure
5.This model simulates the object tracking and the quadcopter position correction. I used a series of
images simulating the frames captured by a camera (you can see the frames sequence in the Figure 7),
which are processed by an external program (described in the subsection 5.1). This program processes
the frames, seeking for a target, the target is defined by a color range in the HSV color space. When a
target is found, the movimentation command and the offset corrections for the X and Y coordinates are
generated, this data would be used by the tracking controller (Intel Edison) for repositioning the
quadcopter.

Figure 5 - Simulation Model

The simulation result can be seen in the Figure 6, the image processing program works to centralize the
tracked object in the center of the camera frame, generating the corrections offsets and the
movimentation commands.

http://ptolemy.eecs.berkeley.edu/ptolemyII/


 

Figure 6 - Ptolemy II simulation results

 

The frames sequence in the Figure 7, tries to simulate the desired behavior of the quadcopter in the real
world, also considering the possibility of a rapid movement of the target (middle of the frames, when the
quadcopter is on HOLD and the boat seems to move ahead).

 



Figure 7 - Simulation camera frames and correction commands

 

5.1 Image processing (Program)
The program uses the OpenCV library to do the image processing. In this simplified model, it is not doing
the tracking of objects properly, because each frame is processed independently, so, if there is more than
one object in the scene with the same color, only the first to be located will be tracked, even if the first is
not the object which was first in the previous frame. The source code can be seen here: main.cpp

6. Model of Computation
This model uses the Synchronous Dataflow paradigm model, since there is a communication between
some components using messages across FIFO queues and there is a constraint in the time that some
components can wait for receive a message while reading from the FIFO queue.
 
In this model we have two parts that do:
 
Process 1: Image processing, object tracking command based and telemetry data processing.
Process 2: MultiWii commander and telemetry collector.
 
Each of these parts run in a separated physical processor in the Intel Edison board, the Process 1 run in
the Intel Atom processor, inside the Linux host. And the Process 2 run in the Intel Quark processor,
inside the real-time operational system Viper from WindRiver (acquired by Intel some time ago).
These two processors have an IPC (Inter-process communication) channel that works like a FIFO queue,
where messages could be exchanged bidirectionally. This pipe channel is used to transfer the image
tracking parameters, the telemetry data and the movimentation commands.
The Process 2 must communicate with the MultiWii board too, this is done using a UART (Universal
asynchronous receiver/transmitter), both the RX and TX channels have FIFO queues internally.
 
Since we have three components exchanging messages, we should have some time constrain between
then, we should follow these steps and work with timeouts read and write operations, avoiding that a
process get blocked:
 

http://opencv.org
https://epos.lisha.ufsc.br/dl162


Process 2 reads the en_track signal from the RX module and telemetry data from MultiWii board.
Process 2 sends these data to Process 1 using the pipe channel.
Process 1 evaluates the received data, do the necessary processing and send new data back to
Process 2.
Process 2 send commands to MultiWii board if applicable.

 

7. References and used Resources
http://www.mouser.com/images/microsites/Intel_EDI1ARDUINALK.jpg (Figure 1)1.
http://artofcircuits.com/wp-content/uploads/2014/11/MultiWii-SE-2V5-5.jpg (Figure 2)2.
http://www.mdpi.com/1424-8220/15/12/29785/htm (Figure 3)3.
https://github.com/sol-prog/OpenCV-red-circle-detection4.
https://commons.wikimedia.org/wiki/File:USS_Hunley_%28AS-31%29_top_view_1980.jpeg (Figure 7)5.
https://cse.sc.edu/~yiannisr/774/2014/Lectures/15-Quadrotors.pdf6.
https://github.com/dch33/Quad-Sim (MATLAB Model)7.

 

http://www.mouser.com/images/microsites/Intel_EDI1ARDUINALK.jpg
http://artofcircuits.com/wp-content/uploads/2014/11/MultiWii-SE-2V5-5.jpg
http://www.mdpi.com/1424-8220/15/12/29785/htm
https://github.com/sol-prog/OpenCV-red-circle-detection
https://commons.wikimedia.org/wiki/File:USS_Hunley_%28AS-31%29_top_view_1980.jpeg
https://cse.sc.edu/~yiannisr/774/2014/Lectures/15-Quadrotors.pdf
https://github.com/dch33/Quad-Sim

	[Table of contents]
	[Table of contents]
	Table of contents


	1. Project
	2. Members
	3. About the project
	4. Requirements
	4.1 Non-Functional Requirements
	4.1.1 Battery autonomy analysis


	5. Model
	5.1 Image processing (Program)

	6. Model of Computation
	7. References and used Resources

