Table of contents

e 1. Project
e 2. Members
e 3. About the project
e 4, Requirements

o 4.1 Non-Functional Requirements

» 4.1.1 Battery autonomy analysis

e 5. Model

o 5.1 Image processing (Program)
e 6. Model of Computation
e 7. References and used Resources

1. Project

Object Tracking with a Radio Controlled Quadcopter

2. Members

e Julido Gessé Fernandes

3. About the project

The goal of this project is to implement a simple object tracking oriented by a predefinide color using the
images captured by a USB camera onboard a quadcopter. The main ideia is to use a Intel Edison (Figure
1) board to do the image processing and to command the movimentation of the quadcopter when is
necessary (general commands will received by a commercial radio control). The quadcopter will use the
MultiWii controller as stabilization system (Figure 2). In the Figure 3 you can see a high level block
diagram of the project.

Figure 1 - Intel Edison and the official Arduino Compatible Board

https://github.com/juliao
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://www.multiwii.com

AUX2

AUX1
RUD/YAW
|ESCrf ELEVI/PITCH
PRI AIL/ROLL
THROT
+5
GND
FTDI / Serial Magnetometer
Interface | Compass
2x 12C Interface
Bluetooth /
Alt Serial 9 Axis Accelerometer
IGyro
Interface

Barometer

Figure 2 - MultiWii SE v2.5 Controller

The quadcopter will be controlled mainly by the radio control, but at the same time, the tracking of an
object can be activated via a switch located at the radio control. The activation of this switch will be
acknowledged by the receiver, that will enable the en_track signal (ADC input) at the Intel Edison board.
Starting at this moment, the object tracking system at the Intel Edison board will seek a target of
predefined color in the current image captured by the camera. When a target have been acquired, the
track system will work to keep the target always in the center of the camera frame, this will be done
sending movimentation commands to the quadcopter through the MultiWii serial interface, using the
MultiWii Serial Protocol (MSP).

In this object tracking project, the camera will be installed under the quadcopter, capturing images of the
ground, so it can move left / right and forward / backward, maintaining a constant height.

http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol
http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol

yaw

ESC1
pitch

RX module "H3 roll

throttle ESC2

\
5%

(
\Z

Intel Edison
{Arduino board)

Multi Wii

ESC3

en_track

5 .
o+
-

RX X ESC4

C

T

Camera

Figure 3 - Blocks diagram

The movimentation of the quadcopter is done by changing the throttle applied to each one of the four
brushless motors, the throttle to each motor should be adequated for the desired movement, like you can
see in the Figure 4. This will be managed but the MultiWii controller board.

® (g) 3 (h)

|
Low apeed High speed

Figure 4 - Quadcopter states ("+" configuration). (a) Forward motion; (b) backwards motion; (c)
movement left; (d) movement right; (e) increase altitude; (f) decrease altitude; (g) leftwards rotation; (h)
rightwards rotation.

4. Requirements

e Radio Controller (TX + RX) (Borrowed by LISHA)

e MultiWii board (Borrowed by LISHA)

e Quadcopter frame with brushless motors and ESCs (Borrowed by LISHA)

e USB camera (To be acquired or borrowed by LISHA)

e LiPo battery 11.1 Volts >25C >3000mAh (To be acquired or borrowed by LISHA)

Utilized components details:

e 4x Brushless motor A2830-11 1000KV RCTimer Outrunner
e 4x ESC SK-30A Simonk Firmware ESC BEC 5V/2A 2-4S LiPo RCTimer
e 4x Propeller 10x4.5 (two reversed)

4.1 Non-Functional Requirements

e The Quadcopter's battery should provide enough power for the motors, MultiWii and the Intel Edison
board.

e The battery should supply enough power for the Quadcopter for at least 10 minutes and save power
for landing if the battery is low (disabling the image processing function).

e The camera images should have the adequate resolution to be processed in the Intel Edison board
(and/or the images could be optimized for performance by downscaling resolution if necessary).

e The processing time between a camera frame and another should be of the order of milliseconds.

e The response time to data received from MultiWii by Intel Edison board must be of the order of
milliseconds.

e The Quadcopter must do smooth movements, because the camera is fixed (Note: Ideally, the camera
should be installed on a gimbal, so the inclination caused by the movement of the Quadcopter is
compensated and the camera keep the target on the frame).

4.1.1 Battery autonomy analysis

Components weight:

e 620g Quadcopter frame + 4 ESCs + 4 brushless motors
66g 4 Propeller with spinner (16,5g each)

11g MultiWii board

22g RX module

7g Intel Edison module

e 46¢g Intel Edison Arduino board

e 32g USB Camera

e 193¢ Battery 2800mAh 3S 35C
e 361g Battery 5000mAh 3S 30C

e Just Intel Edison Kit + USB Camera: 85g
e Quadcopter without battery: 804g

e Quadcopter with 2800mAh battery: 997g
e Quadcopter with 5000mAh battery: 1165g

all data without guarantee - Accuracy: +-15% xcopterCale - Multicopter Calculator News | Help| Tutorial| Language: english v

General Motor Cooling # of Rotors: Model Weight: Frame Size: FCU Tilt Limit: Field Elevation Air Temperature Pressure (QNH):
good bt 4 804 a less Battery 450 mm no limit ~ 500 mASL |25 °c 1013 hPa
flat bt 284 oz 1772 inch 1640 ftASL 7 °F 2991 inHg
Battery Cell Type (Cont./max. C)-charge state: Configuration: Cell Capacity: max. discharge: Resistance: Voltage: C-Rate: Weight:
LiPo 2500mAh - 20/30C W |- full bt 3 s |1 P 2500 mAh B85% v 0.008 Ohm ar v 20 Ccont. 183 a
2500 méh total 30 C max 6.8 oz
Controller Type: Current: Resistance: Weight: Accessories Current drain: Weight:
max 30A ~ 30 A cont 0.008 Ohm 40 a [} A] a
30 A max 14 oz o oz
Motor Manufacturer - Type (Kv): KV (wio torque): no-load Current: Limit (up to 15s): Resistance: Case Length: # mag. Poles: Weight:
RCTimer | A2830-11 (1000) hd 1000 rpmv 07 A@ 10 v 210 W | 0127 | Ohm 30 mm 14 52 a
search... Prop-Kv-Wizard 118 inch 18 =
Propeller Type - yoke twist: Diameter: Pitch: # Blades: PConst/TConst: Gear Ratio
custom v [-l0o v 10 inch 45 inch 7 106 /|10 1 1 Hack! calculate
254 mm 114.3 mm

Hover Flight Time: electric Power: est. Temperature: Thrust-Weight:

specific Thrust:
Remarks:
Battery Motor @ Optimum Efficiency Motor @ Maximum Motor @ Hover Total Drive Multicopter
Load: 2099 C Current: 740 A Current: 1312 A Current: 4.03 A Drive Weight: 1042 g All-up Weight: 1383 g
Voltage: 1035 vV Voltage: 1091 vV Voltage: 1024 W Voltage: 11.30 V 36.8 oz 488 oz
Rated Voltage: 110V Revolutions*: 9887 rpm Revolutions*: 8435 rpm Revolutions*: 5237 rpm Thrust-Weight: 20 :1 add. Payload: 1007 g
Energy: 27.75 Wh electric Power: 807 W electric Power: 1344 W Throttle (log): 46 % Current @ Hover: 16.12 A 355 oz
Total Capacity: 2500 mAh mech. Power: 662 W mech. Power: 1053 W Throttle (linear): 55 % P(in) @ Hover: 1896 W max Tilt: 55 °
Used Capacity: 2125 mAh Efficiency: 821 % Power-Weight: 3886 Wikg electric Power: 455 W P(out) @ Hover: 1418 W max. Speed: 38 km/h
min. Flight Time: 24 min 176.3 Wib mech. Power: 355 W Efficiency @ Hover: 748 % 23.6 mph
Mixed Flight Time: 5.8 min Efficiency: 784 % Power-Weight: 137.1 Wka Current @ max: 5247 A est. rate of climb 6.1 mis
Hover Flight Time: 7.9 min est. Temperature: 38 "C 62.2 Wb P(in) @ max: 6173 W 1201 f'/min
Weight: 579 g 100 °F Efficiency: 779 % Plout) @ max: 4213 W with Rotor fail o
204 oz est. Temperature: 29 C Efficiency @ max: 68.3 %
84 °F
specific Thrust: 7.59 gW

5. Model

A simplified functional model was created in the Ptolemy II software, which can be seen in the Figure
5.This model simulates the object tracking and the quadcopter position correction. I used a series of
images simulating the frames captured by a camera (you can see the frames sequence in the Figure 7),
which are processed by an external program (described in the subsection 5.1). This program processes
the frames, seeking for a target, the target is defined by a color range in the HSV color space. When a
target is found, the movimentation command and the offset corrections for the X and Y coordinates are

generated, this data would be used by the tracking controller (Intel Edison) for repositioning the
quadcopter.

DE Director

Image Processing (Target Tracking) Outputio Aray X offset correction StringTolnt

ﬁ :><]]> (. x.)
. p-cxiiCode indexpy I—)

DiscreteClock

trigger LineReader
{—=m
period,
H mao.uRLD -

Position Correction Plot

s

-

Y offset correction StringTolnt2
{..x..}

Camera Frames

indexpy

Commands for Position Correction

Figure 5 - Simulation Model

The simulation result can be seen in the Figure 6, the image processing program works to centralize the
tracked object in the center of the camera frame, generating the corrections offsets and the
movimentation commands.

http://ptolemy.eecs.berkeley.edu/ptolemyII/

n_] Tracked target (green circle)

E .model.Commands for Position Carrection -

File Help
T — 7 ¥ — 7 5
{"GO_LEFT", "183", "GO _BRCE", "-145"}
{"z0 LEFTI", "1&7", "GD BRCE", "-116"}
{"GC_LEFT", "145", "GO _BACK", "-92"}
{"GO_LEFT", "124", "GO BACK", "-T7&"}
{"GO_LEFT", "97", "GO_BACK", "-58"}
{"GO_LEFT", "7&", "HOLD", "Q"}
{"HOLD", "Q", "HOLD", "Q"}

{"HOLD", "O™, "HOLD", "O"}

{"HOLD", "Q", WHOLD™, "O"}

{"HOLD", "Q", "HOLD", "Q"}
{"e0_RIGHT", "-95", "HOLD", "O"}
{"GO_RIGHT", "-142", "HOLD", "O"}
{"GO_RIGHT", "-113", "HOLD", "Q"}
{"GO_RIGHT", "-3g", "HOLD", "0"}
{"G0_RIGHI", "-63", "HOLD", "0"}

Figure 6 - Ptolemy II simulation results

& .model.Camera Frames = B
File Help
D:\frame00l.jpg ~
D:\framed02.jpg
D:\frame003.jpg
D:\framel04.ipg
D:\frame005.jpg
D:\framell&6.jpg
D:\frame007.jpg
D:\frame008.jpg
D:\framed09.jpg
D:M\framelll.jpg
D:\frame0ll.jpg
D:\frame0l2. jpg
D:M\framell3.jpg
D:\frame0l4.ipg
D:\frame0lS.ipg
D:\framell6.jpg
W
< »
E .model.Position Correction Plot = B
File Edit Special Help
: " i =)
10 Position Correctiohn JJJ
T T T T T T
I J ¥ _offset ®
20 —=
yv_offget ®
1681 T
1.0r1]
nar]
oof
-0ar]
-1or]
-1.8

=

The frames sequence in the Figure 7, tries to simulate the desired behavior of the quadcopter in the real
world, also considering the possibility of a rapid movement of the target (middle of the frames, when the

quadcopter is on HOLD and the boat seems to move ahead).

{"GO_LEFT", "207", "GO_BA

Figure 7 - Simulation camera frames and correction commands

5.1 Image processing (Program)

The program uses the OpenCV library to do the image processing. In this simplified model, it is not doing
the tracking of objects properly, because each frame is processed independently, so, if there is more than
one object in the scene with the same color, only the first to be located will be tracked, even if the first is
not the object which was first in the previous frame. The source code can be seen here: main.cpp

6. Model of Computation

This model uses the Synchronous Dataflow paradigm model, since there is a communication between
some components using messages across FIFO queues and there is a constraint in the time that some
components can wait for receive a message while reading from the FIFO queue.

In this model we have two parts that do:

Process 1: Image processing, object tracking command based and telemetry data processing.
Process 2: MultiWii commander and telemetry collector.

Each of these parts run in a separated physical processor in the Intel Edison board, the Process 1 run in
the Intel Atom processor, inside the Linux host. And the Process 2 run in the Intel Quark processor,
inside the real-time operational system Viper from WindRiver (acquired by Intel some time ago).

These two processors have an IPC (Inter-process communication) channel that works like a FIFO queue,
where messages could be exchanged bidirectionally. This pipe channel is used to transfer the image
tracking parameters, the telemetry data and the movimentation commands.

The Process 2 must communicate with the MultiWii board too, this is done using a UART (Universal
asynchronous receiver/transmitter), both the RX and TX channels have FIFO queues internally.

Since we have three components exchanging messages, we should have some time constrain between
then, we should follow these steps and work with timeouts read and write operations, avoiding that a
process get blocked:

http://opencv.org
https://epos.lisha.ufsc.br/dl162

e Process 2 reads the en track signal from the RX module and telemetry data from MultiWii board.

e Process 2 sends these data to Process 1 using the pipe channel.

* Process 1 evaluates the received data, do the necessary processing and send new data back to

Process 2.
e Process 2 send commands to MultiWii board if applicable.

Intel Edison
{Arduino board)

BX module

MCU
(Quark)

PIPE

7.

Nk wbhe

References and used Resources

http://www.mdpi.com/1424-8220/15/12/29785/htm (Figure 3)
https://github.com/sol-prog/OpenCV-red-circle-detection

https://cse.sc.edu/~yiannisr/774/2014/Lectures/15-Quadrotors.pdf
https://github.com/dch33/Quad-Sim (MATLAB Model)

yaw

pitch
roll

throttle

MultiWii

http://www.mouser.com/images/microsites/Intel EDIIARDUINALK.jpg (Figure 1)
http://artofcircuits.com/wp-content/uploads/2014/11/MultiWii-SE-2V5-5.jpg (Figure 2)

ESC1

EsC2

ESC3

ESC4

https://commons.wikimedia.org/wiki/File:USS Hunley %28AS-31%29 top view 1980.jpeg (Figure 7)

http://www.mouser.com/images/microsites/Intel_EDI1ARDUINALK.jpg
http://artofcircuits.com/wp-content/uploads/2014/11/MultiWii-SE-2V5-5.jpg
http://www.mdpi.com/1424-8220/15/12/29785/htm
https://github.com/sol-prog/OpenCV-red-circle-detection
https://commons.wikimedia.org/wiki/File:USS_Hunley_%28AS-31%29_top_view_1980.jpeg
https://cse.sc.edu/~yiannisr/774/2014/Lectures/15-Quadrotors.pdf
https://github.com/dch33/Quad-Sim

	[Table of contents]
	[Table of contents]
	Table of contents

	1. Project
	2. Members
	3. About the project
	4. Requirements
	4.1 Non-Functional Requirements
	4.1.1 Battery autonomy analysis

	5. Model
	5.1 Image processing (Program)

	6. Model of Computation
	7. References and used Resources

