[oT Platform

Software/Hardware Integration Lab at UFSC

IoT Platform

1. %9SimR6

Table of contents

e [oT Platform
e 1. Prolog
e 2. IoT Platform Overview
o 2.1. SmartData
o 2.2. SmartData Series
o 2.3. Authentication and Authorization
o 2.4. Usefull SmartData Units
e 3. REST API for Stationary Objects
o 3.1. Data Querying
= 3.1.1. Data Aggregation
» 3.1.2. Fault Injection
» 3.1.3. Downsampling
o 3.2. Series Creation
= 3.2.1. Series Types and Modes
= 3.2.2. Series Status
= 3.2.3. Meaninful Types and Status
e Time-Triggered Series
e Event-Driven Series
o 3.3. Data Insertion
» 3.3.1. Bulk Data Insertion
= 3.3.2. Series Documentation
3.4. Series Termination
3.5. Al Workflows
= 3.5.1. Persistency
= 3.5.2. Loading previous data
= 3.5.3. Inserting new data
= 3.5.4. Notifications
o 3.6. Data Searching
o 3.7. Response codes
o 3.8. Plotting a dashboard with Grafana
e 4. Binary API for SmartData Version 1.1
o 4.1. Create series (Binary)
o 4.2. Insert data (Binary)
= 4.2.1. Binary Multi SmartData
o 4.3. Version format
e 5. Client Authentication
e 6. Scripts
0o 6.1.C++
= 6.1.1. Get Script Example
o 6.2. Python
= 6.2.1. Get Script Example
= 6.2.2. Put Script Example
°©6.3.R
= 6.3.1. Get Script Example
e 7. Troubleshooting

(e}

(e}

https://epos.lisha.ufsc.br/ 8/01/2026

#Binary_API_for_SmartData_Version_1.1

o 7.1. TLS support for Post-Handshake Authentication
e Review Log

1. Prolog

LISHA's IoT Platform is an effort to support projects investigating the application of Data Science
algorithms in the realm of the Internet of Cyber-Physical Systems. This document is a technical
documentation of the Platform aimed at supporting real users. Before reading it, or if you just want
to get a glimpse of it, you might want to visit the Platform's site for an overview of its architecture
and the underlying technology. LISHA's 10T Platform is based on EPOS SmartData, so you might also
want to take a look at it before continuing with this document. Finally, if you want to contribute to
the development of the Platform, there is also a Guide about its Internals.

The IoT Platform is organized around a set of microservices relating to storage, processing,
aggregation and visualization of data widely used in LISHA projects. The SmartData format tags
data with spatial location, high definition temporal tagging, authentication and semantics. The
microservice composition is performed through specific workflows for each application. A library of
pre-processing, filters, feature selection, feature extraction, transformation, aggregation and
machine learning algorithms effectively enables the creation of these workflows. The data can also
be recovered through origin, time, space or semantics filtering. Workflows can also be constructed
by the same libraries. The non-relational database and the workflow execution containers have been
designed for scalability on the high-availability platform maintained by SETIC/UFSC (our data
center). The platform also contains a real-time data visualizer, which, after configuration, shows the
data through a website for monitoring and functional verification. The Microservice Manager acts
as a front-end to IoT devices, IoT gateways, Data Analytics services, and a Visualization Engine.
Microservices requests are first handled by the Domain Manager, which is responsible for
mapping SmartData sets to projects and implementing certificate and password-based
authentication (both for users and devices), access control, and secure communication. The
SpaceTime Mapper is responsible for mapping regions of Space and Time to the associated
SmartData stored or to be stored in the Platform. The Insertion and Retrieval managers are
responsible for running Data Science algorithms on the SmartData flowing into and out of the
Platform.

Da mesma forma, os dados podem ser recuperados em func¢ao da origem, do tempo, do espaco ou da
semantica. A recuperagao de dados pode também utilizar workflows construidos com as mesmas
bibliotecas. Tanto o banco de dados nao relacional quanto os containers de execucao de workflows
foram projetados para escalar sobre a plataforma de alta disponibilidade mantida pela SETIC / UFSC
(nosso data center). A plataforma também conta com um visualizador de dados em tempo real que,
apos ser configurado, exibe os dados através de um website para monitoramento e verificagao do
seu funcionamento.

2. IoT Platform Overview

https://epos.lisha.ufsc.br/ 8/01/2026 2

https://iot.lisha.ufsc.br/
https://iot.lisha.ufsc.br/Architecture
https://iot.lisha.ufsc.br/Technology
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/IoT+Platform+Internals

put or get request

loT
Device

SmartData

IoT Platform Overview

Each SmartData stored in the Platform is a data point in a SmartData time series, and it is
characterized by a version, a unit, and the SpaceTime coordinates of origin (that is, where and when
the SmartData was produced, created, captured, sampled, etc.).

2.1. SmartData

The SmartData stored and processed by the platform have the following structure:

SmartData

version unit value uncertainty x y vA t dev signature

e version: the SmartData version:
o "1.1":version 1, Stationary (.1), representing data from a device that is not moving;
o "1.2":version 1, Mobile (.2), representing data from a device that is moving;
e unit: the type of the SmartData (see the SmartData documentation and typical units);
e value: the data value (e.g., the temperature measured by a thermometer);
e uncertainty: a measure of uncertainty, usually transducer-dependent, expressing Accuracy,
Precision, Resolution, or a combination thereof;
e X, Yy, z: the absolute coordinates of the location where the data originated;
e t: the time instant at which the data originated (in UNIX epoch microseconds).
e dev: a disambiguation identifier for multiple transducers of the same Unit and space-time
coordinates (e.g., 3-axis accelerometer), "0" otherwise (i.e., if a single transducer is present);
e signature: a cryptographic identifier for mobile devices producing SmartData (only for version
1.2 / mobile).

SmartData can be represented in JSON as follows:

0oooooo

https://epos.lisha.ufsc.br/ 8/01/2026 3

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/IoT+Platform#Typical_units_representation

{ "version" : unsigned char "unit" : unsigned long "value" : double "uncertainty" : unsigned long
"x":long "y" : long "z" : long "t" : unsigned long long "dev" : unsigned long "signature": string }
assuming the following sizes the types used in this document:

char: 1 byte;

short: 2 bytes;
long: 4 bytes;

e long long : 8 bytes;

2.2. SmartData Series

The SmartData Series stored and processed by the platform have the following structure:

SmartData
Series

version unit x y yA r t0 tf period count event workflow

e version: the version of the SmartData in the series (a series does not contain mixed versions
SmartData);

e unit: the type of the SmartData in the series (see the SmartData documentation and typical
units);

e X, Yy, z: the absolute coordinates of the center of the sphere containing the data points in the
series (from a SmartData Interest);

e r: the radius of the sphere containing the data points in the series (initially from a SmartData
Interest; is automatically adjusted with data point insertion);

e t0: (optional) a timestamp representing the time in which the series begins, in UNIX epoch
microseconds;

e tf: (optional) a timestamp representing the time in which the series ends, in UNIX epoch
microseconds;

e type: (optional) "TTH' specifies high-frequency data (KHz sampling) with fixed sampling rate.
Some storage optimizations are applied.

e period: (optional) only defined for time-triggered series representing the period of data points
(usually from a SmartData Interest, but also from method create);

e count: (optional) specifies the number of data points to be captured before closing the series (-
+tf+- is captured when count data points are collected);

e event: (optional) a SmartData expression designating an event that marks the beginning of the
series (-+tf+- is derived from the time the expression becomes/became true, representing the
occurrence of "event");

e workflow: (optional) specify server-side algorithms to be applied on the series (see Al Workflow
Section);

o input workflows are executed during insert operations (method put) to preprocess data,
run machine learning algorithms, fix data points following a measurement error, generate
notifications and even interact with other series.

o output workflows are executed along with query operations (method get) to post process
the data, for instance, performing aggregations or transformations.

SmartData series are classified based on the operation mode of the associated SmartData, either as
Time-Triggered or Event-Driven. At the time of creation, series associated with time-triggered
SmartData must define a period, whereas those not defining this attribute are assumed to be event-
driven. The beginning of a series can be specified by time (giving t0), event, or manually (by not

https://epos.lisha.ufsc.br/ 8/01/2026 1

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/IoT+Platform#Typical_units_representation
https://epos.lisha.ufsc.br/IoT+Platform#Typical_units_representation

providing t0, which is then assumed to be the current time). Therefore, the beginning of a time-
triggered series can be an event, and the series will remain a time-triggered series. Similarly, event-
driven series can start at a given time. The end of a series can be specified by time (giving tf),
event, manually (with the method finish, which makes tf equal to the current time), or in terms of
event counting (by giving count). Events are expressed as internal (stored in the platform) or
external SmartData, and arithmetic and logical operators.

A SmartData Series can be represented in JSON as follows:

0o0oooo

"Series" : Object { "version" : unsigned char "unit" : unsigned long "x" : long "y" : long "z" : long
"r" : unsigned long "t0" : unsigned long long "tf" : unsigned long long "type" : char[3] "period" :
unsigned long "count" : unsigned long "event" : string "accuracy" : unsigned long "workflow" :
unsigned long }

2.3. Authentication and Authorization

API methods require Authentication and Authorization, which is usually done based on digital
certificate hierarchies controlled by the Platform at connection-time. This kind of primary
authentication is part of the RESTfull API, and, therefore, it is not represented as JSON in any
service. However, in some rare cases, access without a digital certificate can be granted based on
Credentials appended to API method invocations and expressed in this format:

0o0oooo

"Credentials" : Object { "domain" : string "username" : string "password" : string }

e domain: the domain the SmartData belongs to (usually a project or a project perspective;
defaults to "public");

e username: a username to be used to validate access to the requested domain;

e password: a password used to authenticate the user requesting access to a domain.

2.4. Usefull SmartData Units

The formation rules for SmartData Units are available in the EPOS user guide, and some useful units
are listed here.

3. REST API for Stationary Objects

3.1. Data Querying

Method: POST
URL: https://iot.lisha.ufsc.br/api/get.php
Body:

(0ooooo

"Series" : Object { "version" : unsigned char "unit" : unsigned long "x" : long "y" : long "z" : long
"r'" : unsigned long "dev" : unsigned long "t0" : unsigned long long "tf" : unsigned long long
"type": char[3] "period": unsigned long "workflow" : unsigned long }
SmartData querying is a space-time operation that is not limited or even bound to specific devices.
The geographic search engine built in the Platform will promptly collect data from several devices
within the specified space-time region while processing the query. The definition of dev in this
operation must be interpreted as a filter: if multiple SmartData exists in the designated space-time

https://epos.lisha.ufsc.br/ 8/01/2026 5

https://epos.lisha.ufsc.br/IoT+Platform#Authentication_and_Authorization
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/Usefull+SmartData+Units
https://iot.lisha.ufsc.br/api/get.php

region originated from the same coordinates (i.e. (unit, x, y, z, t)), then only those matching
dev are included.

The workflow is used to specify a post-processing function for the query by selecting an output
workflow.

3.1.1. Data Aggregation

While querying data, an aggregation function can be invoked on the resulting data by appending the
following structure to a series object in the body of a query:

(0ooooo

"Aggregator" : Object { "name" : string, "parameter’ : float, "offset' : unsigned long, "lenght' :
unsigned long, "spacing' : unsigned long }
The time-related attributes range, delay, and spacing are expressed in us. Only the name attribute
is required, other attributes are optional.
More sophisticated aggregation functions can be modeled as output workflows. An aggregator can
also be combined with an output workflow, where the aggregator runs first (i.e., the workflow will
handle already aggregated data).
The following is a list of the currently available aggregators. To apply one of the following
aggregators simply set the name attribute accordingly.

e min: returns the minimum value among the SmartData selected by the query;

e max: returns the maximum value among the SmartData selected by the query;

e mean: returns the mean of the set of values resulting from the query;

e filter: filters the SmartData selected by the query, returning only those whose value is larger
than parameter and smaller than offset, eventually returning {} if no SmartData matching
the criterion is found; if any of the parameter or offset is omitted, then its corresponding
criterion is ignored;

e higherThan: filters out SmartData whose value is less than parameter, eventually returning {}
if no SmartData matching the criterion is found;

e confidence: the value of the SmartData matching the query is replaced by each SmartData
confidence.

3.1.2. Fault Injection

Some aggregators have been designed to inject faults on the results of SmartData Series queries.
They use the following optional attributes:

e offset: offset in us from the beginning of the query results to the first SmartData to undergo
fault injection;

e length: length of the time window of fault injection, in us, starting at offset;

e spacing: time window in us to wait after offset + length before reapplying the fault injector.

The available fault injectors are:

e drift: applies a drift of parameter to the values of the SmartData selected by the query. The
drift varies according to the number of samples it has been applied to following this formula:
drift = parameter *1i.

e stuckAt: the SmartData selected by the query in the time windows defined by [offset,
length] spaced by spacing have their values set to the value of the first SmartData in the
interval.

e constantBias: sums parameter to the value of each SmartData selected by the query in the

https://epos.lisha.ufsc.br/ 8/01/2026 6

time windows defined by [offset, lenght] spaced by spacing.
e constantGain: each SmartData selected by the query has its value multiplied by parameter,
considering the windowing mechanism described earlier.

3.1.3. Downsampling

When only sparse data samples of some long or dense data series is needed, the downSampling
aggregator can specify the spacing between the original data points that shall be returned. Uses
only one attribute:

e spacing: the number of samples skipped between each returned value.

The series' original attributes (as period) aren't changed.
In the example below, samples 0, 100, 200, 3000... will be returned.

0000ooo

"series": { "version":"1.1", ... }, "aggregator":{"name":"downSampling", "spacing":100}
3.2. Series Creation

Method: POST
URL for create: https://iot.lisha.ufsc.br/api/create.php
Body:

0o0oooo

"Series" : Object { "version" : unsigned char "unit" : unsigned long "x" : long "y" : long "z" : long
“r" : unsigned long "dev" : unsigned long "t0" : unsigned long long "tf" : unsigned long long
"period" : unsigned long "count" : unsigned long "event" : string "uncertainty" : unsigned long
"workflow" : unsigned long }
This method creates a SmartData Series if there is no other existing series that already encompasses
the designated unit (unit) and space-time region (x, y, z, r, dev, t0, tf) for the same
operating mode (e.g., time-triggered or event-driven). If the new series intersects existing ones but
is not fully contained in any of them, a new series is created with the smallest space-time region that
contains both the given space-time region and all the preexisting series intersecting with that
region. Thus, this method can be used to merge series irreversibly and must be used with extreme
caution (it can also be very expensive).

All the series in a domain associated with the same unit must either not use an input workflow
or use the same input workflow, thus avoiding multiple insertions of the same SmartData. The
create method follows the execution flow presented below:

3.2.1. Series Types and Modes

The method create can be used to create different types of series with quite different operating
modes. As previously stated, series crated with a defined period are assumed to contain time-
triggered SmartData, whereas those not defining this attribute are assumed to contain event-driven
SmartData. Additional information about the operating regimen of a series can be given through the
attributes t0, tf, count, event, and uncertainty.

For sanity checking and documentation purposes, a series can have a starting time different from its
creation time. The starting time can be explicitly specified using attribute t0. It can also be set
implicitly using the time an event occurs. This event, if set, is documented using the event attribute.
Therefore, if event is given but not t0, then the starting time of the series will be set by the

https://epos.lisha.ufsc.br/ 8/01/2026 7

https://iot.lisha.ufsc.br/api/create.php

timestamp in the first SmartData (i.e., series[0]) inserted in the series (which is assumed to be
conditioned by event). If neither t0 nor event are given, then the starting time of the series is
assumed to be the moment in which create was called. Note that specifying an event for a time-
triggered series does not make it an event-driven one, nor does the association of a timestamp t0
with an event-driven series make it time-triggered. It is solely the presence (or absence) of attribute
period that characterizes the series as time-triggered or event-driven. Inserting data before t0 for a

series that has a defined t0 is an error.

Similarly, the end of a series can be specified by giving tf along with create or manually through
the invocation of the finish method, which sets tf to the current time. An event can be specified
at creation-time to document the ending of a series. It can also be supplied along with finish.

Trying to insert SmartData in a series after tf will return an error condition.

3.2.2. Series Status

A SmartData Series can assume the following status during its life cycle:

Status Description

Waiting the series is created, but t0 is not yet set, or it is set but not yet reached

Open data for the series is being collected and tf is not yet set or it is set but not yet
reached

Closed tf is defined and reached, so no further insertions are allowed

Defective the series should be in status closed, but data counting does not match the

specification

3.2.3. Meaninful Types and Status

Time-Triggered Series
TT-to.t: begin and end set at creation

JSON

"Series" : Object { "version" : 1.1 "unit" : unsigned long

"x":long "y" : long "z" : long "r" : unsigned long "t0" :
unsigned long long "tf" : unsigned long long "period" :

unsigned long "uncertainty" : unsigned long "workflow" :

unsigned long }

TT-t,c: begin set at creation and end set by count

JSON

https://epos.lisha.ufsc.br/ 8/01/2026

Attributes
P = period
to = t0

t, = tf
c=(-t)/p

n = current data
count

now = current
time

Attributes

Status

Waiting : now <

to
Open: t) <= now
<=t

Closed: (now >
t) A (n >=c¢)
Defective: (now
>t)A(n<c)

Status

TT-t,c: begin set at creation and end set by count

"Series" : Object { "version" : 1.1 "unit" : unsigned long
“x":long "y" : long "z" : long "r" : unsigned long "t0" :

unsigned long long "period" : unsigned long "count" :

unsigned long "uncertainty" : unsigned long "workflow" :

unsigned long } }

TT-t, f: begin set at creation and end set by finish

JSON

"Series" : Object { "version" : 1.1 "unit" : unsigned long
"x":long "y" : long "z" : long "r" : unsigned long "t0" :
unsigned long long "period" : unsigned long "event" :
string "uncertainty" : unsigned long "workflow" :

unsigned long } }

TT-e.t;: begin set by data and end set at creation

JSON

"Series" : Object { "version" : 1.1 "unit" : unsigned long
"x":long "y" : long "z" : long "r" : unsigned long "tf" :
unsigned long long "period" : unsigned long "event" :
string "uncertainty" : unsigned long "workflow" :

unsigned long } }

TT-e.c: begin set by data and end by count

JSON

https://epos.lisha.ufsc.br/ 8/01/2026

p = period

to = tO

C = count
t,=to+p*c

n = current data
count

now = current
time

Attributes

P = period

to = to

t; = finish.t
c=t—-(t-t)/p
n = current data
count

now = current time

finish.event —»
series.event =
finish.event

Attributes
P = period
t,=tf

to = series[0].t
c =1t - (t-t)/
p

n = current data
count

now = current
time

Attributes

Waiting : now <

to
Open: t, <= now
<=t

Closed: (now >
t) A (n>=c)
Defective: (now
>t)A(n<c)

Status

Waiting : now
<t

Open: t, <=
now

Closed: t; A (n
>= ()
Defective: t; A
(n<oc

Status

Waiting : —to
Open: t) A (to <=
now <=ty
Closed: t; A (now
>t) A(n>=c)
Defective: (—to A
(now > t;)) v (to A
(n <c))

Status

TT-e.c: begin set by data and end by count

"Series" : Object { "version" : 1.1 "unit" : unsigned long
"x":long "y" : long "z" : long "r" : unsigned long "period"
: unsigned long "count" : unsigned long "event" : string
"uncertainty" : unsigned long "workflow" : unsigned long

}}

TT-e.f: begin set by data and end by finish

JSON

"Series" : Object { "version" : 1.1 "unit" : unsigned long
"x":long "y" : long "z" : long "r" : unsigned long "period"
: unsigned long "uncertainty" : unsigned long "workflow"

: unsigned long } }

Event-Driven Series
ED-to.t;: begin and end set at creation

JSON

"Series" : Object { "version" : 1.1 "unit" : unsigned long
"x":long "y" : long "z" : long "r" : unsigned long "t0" :
unsigned long long "tf" : unsigned long long
"uncertainty" : unsigned long "workflow" : unsigned long

}

ED-t,c: begin set at creation and end set by count

JSON

https://epos.lisha.ufsc.br/ 8/01/2026

p = period

C = count

to = series[0].t
tt=to-oto+p *
o

n = current data
count

now = current
time

Attributes

P = period

to = series[0].t

t; = finish.t

c =1t At— (t-t)
/p

n = current data
count

now = current
time

Attributes

to = t0

t,= tf

n = current data
count

now = current
time

Attributes

Waiting : —to
Open: to A (to <=
now <=ty
Closed: t; A (now
>t) A (n>=c¢)
Defective: to A
(now>t) A (n<
c)

Status

Waiting : -t
Open: t) A
Closed: to A t; A
(n>=c¢)
Defective: to A t;
A(n<c)

Status

Waiting : now <

to

Open: t) <= now

<=t

Closed: (now > t))

A(n>0)

Defective: (now

>t) A(n=0)
Status

10

ED-t,c: begin set at creation and end set by count

to = 10 Waiting : now <

"Series" : Object { "version" : 1.1 "unit" : unsigned long c = [ColnE to
“x":long "y" : long "z" : long "r" : unsigned long "t0" : t, = series[c].t Open: —t; A (&
unsigned long long "count" : unsigned long "uncertainty" : = cyrrent data <= now)
unsigned long "workflow" : unsigned long } } count Closed: t, A (n

now = current >=()

time Defective: t; A

(n<oc)
ED-t, f: begin set at creation and end set by finish
JSON Attributes Status
to= to Waiting : now <

"Series" : Object { "version" : 1.1 "unit" : unsigned long t = finish.t to

"x":long "y" : long "z" : long "r" : unsigned long "t0" :

n = current data Open: —t; A (Lo <=
unsigned long long "event" : string "uncertainty" :

. _ count now)
unsigned long "workflow" : unsigned long } } now = current Closed: t, A (now
time >t) A (n>=0)

Defective: t; A
(now>t) A (n =

0)
ED-e.t;: begin set by data and end set at creation
JSON Attributes Status
t,= tf Waiting : —to

"Series" : Object { "version" : 1.1 "unit" : unsigned long
"x":long "y" : long "z" : long "r" : unsigned long "tf" :
unsigned long long "event" : string "uncertainty" :

to = series[0].t Open: to A (to <=
n = currentdata now <=ty

count Closed: to A (now
unsigned long "workflow" : unsigned long } } now = current >t) A (n > 0)
time Defective: (now
>t) A (n=0)
ED-e.c: begin set by data and end by count
JSON Attributes Status

https://epos.lisha.ufsc.br/ 8/01/2026 11

ED-e.c: begin set by data and end by count

c = count Waiting : —to
"Series" : Object { "version" : 1.1 "unit" : unsigned long "x": , = series[0].t Open:) A
long "y" : long "z" : long "r" : unsigned long "count" : t, = series[c].t —t,
unsigned long "event" : string "uncertainty" : unsigned long ,, — cyrrent data Closed: t, A
"workflow" : unsigned long } } count t,
now = current
time
ED-e.f: begin set by data and end by finish
JSON Attributes Status
to = series[0].t Waiting : —to
"Series" : Object { "version" : 1.1 "unit" : unsigned t, = finish.t Open: t,
long "x" : long "y" : long "z" : long "r" : unsigned long ,, = current data Closed: t, A to A
"event" : string "uncertainty" : unsigned long count (> 0)
"workflow" : unsigned long } } now = current time Defective: t; A t
A (n=0)

finish.event —»
series.event =
finish.event

3.3. Data Insertion

Method: POST
URL: https://iot.lisha.ufsc.br/api/put.php
Body:

"SmartData" : Array [{ "version" : unsigned char "unit" : unsigned long "value" : double
"uncertainty" : unsigned long "x" : long "y" : long "z" : long "t" : unsigned long long "dev" :
unsigned long } |
This method is used to insert SmartData into the existing SmartData Series. The series is implicitly
determined from the given unit and space-time coordinates. If the data point does not fit in any
existing series, then the operating fails, and error 400 is returned. Multiple data points can be

inserted at once (hence the Array in the JSON).

3.3.1. Bulk Data Insertion

To optimize the processing of multiple SmartDate originated at the same location (i.e. r=0), the put
can receive alternative payloads (body). Currently, the following structures are supported:

Periodic SmartData with Constant Uncertainty

If the multiple values being inserted have a constant time rate (e.g., they result from a regular
periodic sampling), the period attribute can be used in the header, and the offset is omitted in the
data points. Additionally, if a constant uncertainty — possibly 0 — is to be assigned to all data

https://epos.lisha.ufsc.br/ 8/01/2026 12

https://iot.lisha.ufsc.br/api/put.php

points, it can also be specified in the header.

Body: MultiValueSmartData

0o0oooo

"MultiValueSmartData" : Object { "version" : unsigned char "unit" : unsigned long "x" : long "y" :
long "z" : long "r" : 0 "t0" : unsigned long long "dev" : unsigned long "type" : char(3), // "TTH',
‘TTL', 'ED'. 'OLD' assumed if not present "period" : unsigned long, "uncertainty" : unsigned long //
OPTIONAL: if given, then ommit it in data points "period" : unsigned long // OPTIONAL.: if given,
then ommit offset in data points "datapoints": Array [{ "offset : unsigned long // OPTIONAL, not
used if period is informed in the header "value" : double "uncertainty" : unsigned long //
OPTIONAL, not used if informed in the header }] }

MultiDeviceSmartData

When a node or datalogger is regularly capturing several variables of the same type, with the same

SI unit, a MultiDeviceSmartData can be used to spare the space-time coordinates.

Body: MultiDeviceSmartData

0o0oooo

"MultiDeviceSmartData" : Object { "version" : unsigned char "unit" : unsigned long "x" : long "y" :
long "z" : long "r" : 0 "t0" : unsigned long long "datapoints": Array [{ "offset : unsigned long
"value" : double "dev" : unsigned long; "uncertainty" : unsigned long }] }
Note that the device field must start from 0 since it is only used for disambiguation for multiple
same-type sensors.

MultiUnitSmartData
Allows multiple variables from a single space-time coordinate to be inserted without repeating such
coordinate.

Body: MultiUnitSmartData

0o0oooo

"MultiUnitSmartData" : Object { "version" : unsigned char "x" : long "y" : long "z" : long "r" : 0
"t0" : unsigned long long "datapoints": Array [{ "unit" : unsigned long "offset : unsigned long
"value" : double "dev" : unsigned long; "uncertainty" : unsigned long }] }

3.3.2. Series Documentation

The information present in the series creation data, determining the data type (SI Unit), position,
and time interval, isn't enough to completely describe the meaning of data. Therefore, the API was
extended to support the insertion and the querying of a human-readable description of the data.

The API offers two methods: describe and list. To describe the data of a series, the describe
method accepts a JSON name series_description. If the dev field contains 0, the description applies
to all devices of the defined unit at this position. Information about a specific device, or specific
devices with different type and period fields can also be inserted.

Method: POST
URL: https://iot.lisha.ufsc.br/api/describe.php
BODY:

00oooo

https://epos.lisha.ufsc.br/ 8/01/2026 13

https://iot.lisha.ufsc.br/api/describe.php

"series description" : { "version" : unsigned char "unit" : unsigned long "x" : long, "y" : long, "z" :
long, "type" : char(3), "period" : unsigned long, "dev" : unsigned long, "description" : string }

The describe method also supports an array of descriptions, as illustrated below:

0o0oooo

"series descriptions" : [{ "version" : unsigned char, "unit" : usigned long, "x": long,
....,"description": string}, { "version" : unsigned char, "unit" : usigned long, "x": long,
....,"description": string},]

The 1ist method supports queries the descriptions of devices of a specific region. It uses the
series JSON. Several fields are optional for this method, The unit, dev, type and period
parameters can be used to filter specific information.

Method: POST
URL: https://iot.lisha.ufsc.br/api/list.php
BODY:

a0ooooo

"series" : { "version" : unsigned char, "unit" : unsigned long, "x" : long, "y" : long, "z" : long, "r" :
long, "dev": unsigned long, "type" : char(3), "period" : unsigned long, }

Both methods, like all others, require authentication through certificate or username/password and
are restricted to the user's domain.

3.4. Series Termination

Method: POST
URL: https://iot.lisha.ufsc.br/api/finish.php
Body:

0oooooo

"Series" : Object { "version" : 1.1 "unit" : unsigned long "x" : long "y" : long "z" : long "r" :
unsigned long "tf" : unsigned long long "event" : string "uncertainty" : unsigned long }
This method is used to finish a SmartData Series. It adjusts the series final time stamp t; and, if
event is given, this method concatenates it with the previous value of that attribute. Inserting new
SmartData by invoking put after having invoked finish is an error and will return 400.

3.5. Al Workflows

SmartData on the platform can be submitted to specific workflows to process data before its proper
insertion (e.g., fix known sensors error and notifying anomalies) or by applying a transformation on
requested data (e.g., Fast Fourier Transform), called Input and Output Workflows, respectively. An
Input Workflow can be specified during Series creation, denoting the "ID" of an existing workflow at
the respective Series domain. In this way, its execution takes place during SmartData insertions on
this Series (see Section Overview of the Platform for more details of this relation). Input workflows
are applied to each SmartData individually, and persistency is achieved using daemons. Moreover,
an Input Workflow can store useful meta-data inside the SmartData record (using the uncertainty
remaining bits), or a new Series, or a file in the same folder as the workflow code. An Output

https://epos.lisha.ufsc.br/ 8/01/2026 14

https://iot.lisha.ufsc.br/api/list.php
https://iot.lisha.ufsc.br/api/finish.php
https://epos.lisha.ufsc.br/IoT+Platform#Overview_of_the_platform

Workflow can be specified during a query request, denoting the "ID" of an existing Output Workflow
at the respective domain. In this way, its execution is applied at the end of a query process to
consider all SmartData records returned. For both Workflow types, if no workflow "ID", or 0
(default), is specified in the Series, no Workflow is executed. The same applies if the specified "ID" is
not available in the current domain.

Workflows are stored on directories according to the domain they belong to (i.e.,
"smartdata/bin/workflow/<domain>/"). Input Workflows are named "in" followed by the workflow
number ("ID"). For instance, the first Input Workflow of a domain, ID = 1, must be named "in1".
Output Workflows are named "out" followed by the workflow number (e.g., "outl"). Currently, for
security purposes, installing a Workflow code requires a system admin to intermediate the
operation, but the code itself can be user-defined for the specific domain of interest.

Input Workflow Diagram

With new SmartData (put.php)

Query for Series in which new
SmartData belongs

no @ yes
Normal insertion flow l

¢ Daemon Exists?
? Ve

Start Daemon
_ |Insert SmartData

no

retumed
Call Workflow with
i e |
Accumulate severily SmartData as parameter
and notify

'

Workflow uses
Daemon?

otification
enerated?

Run workflow -
and return JSON

Set inx_input file
Run Daemon
and write inx_output

Return to workflow,
finish processing
and return JSON

Output Workflow Diagram

https://epos.lisha.ufsc.br/ 8/01/2026 15

(M
!_\- /.

With new guery request (get.php)

Query for SmartData that
helongs to requested series
and set the JSON response

ne @ yes

Retum JSON response |

?

Return to backend
and send response

Daemon Exists?

Daemon is
no Running?

yes

Start Daemon no

Set outx_parameter with
| resultant JSON response [
and Call Workflow

no
Run workflow and <

return modified JSON

Workflow uses
Daemon?

Set outx_input file
Run Daemon
land write outx_output

Return to workflow,
finish processing and
return modified JSON

A simple example of python workflow
a0ooooo

#!/usr/bin/env python3 import sys import json if name ==' main "
#+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++
smartdata = json.loads(sys.argv[1]) # Load json from argv[1] #+++++++++++++++++ DO
NOT CHANGE THIS LINE +++++++++++++++++ # ... # DO SOMETHING HERE
smartdata['value'] = 2*smartdata['value'] # example # ... #+++++++++++++++++ DO NOT
CHANGE THIS LINE +++++++++++++++++ print(json.dumps(smartdata)) # Send
smartdata back to API #+++++++++++++++++ DO NOT CHANGE THIS LINE
+++++++

3.5.1. Persistency

Input Workflows are executed for each instance of SmartData. Workflows that require persistence
(e.g., requiring information of more than one SmartData) should implement a daemon. Daemons are
meant to be separated processes that receive data from the workflow, do the processing, and either
return this to the workflow or insert the processed data on a new Series, preserving the original
data. Before a workflow execution, the platform checks for the existence of a demon for this
workflow. If so, the platform Backend assures its execution, initializing it whenever necessary.
Additionally, each workflow must manage its data, including the daemon's input and output.

Daemons are placed on the same directory as their respective workflows (i.e.,
"smartdata/bin/workflow/<domain>/"), and each workflow can have only one daemon. The daemons
are named with the same name of the workflow plus the word "daemon"” (e.g., "inl daemon"). Files
that receive daemon inputs or outputs are named with the same name of the workflow plus the word

https://epos.lisha.ufsc.br/ 8/01/2026 16

"input" or "output" accordingly (e.g., "inl input" and "inl output").

The platform Backend manages the execution of a daemon. The Backend creates two support files,
one for the process pid and the other for the execution log. The pid and log file are named with the
workflow name plus the word "pid" or "log" accordingly (e.g., "inl pid" and "inl log").

Daemons also have a life cycle, finishing their execution after the current SmartData processing. To
achieve this, one can implement a watchdog implementation over the input file content.

The following example of workflow writes its input into a file to be processed by the daemon,

keeping data persistency
(00ooooo

import sys, json from process_verify import process is alive if name =="' main ": ' This
dummy workflow is used to calculate the average of the last 10 inserted SmartData "' if
len(sys.argv) != 2: exit(-1) #+++++++++++++++++ DO NOT CHANGE THIS LINE
+++++++++++++++++ smartdata = json.loads(sys.argv[1]) # Load json from argv[1]
#+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++ # ... #
DO SOMETHING HERE IF IT WILL CHANGE DATA # ... #+++++++++++++++++ DO NOT
CHANGE THIS LINE +++++++++++++++++ print(json.dumps(smartdata)) # Send
smartdata back to API #+++++++++++++++++ DO NOT CHANGE THIS LINE
+++++++++++++++++ # ... # DO SOMETHING HERE IF IT WILL NOT CHANGE DATA
(INCREASES PARALELLISM BY UNBLOCKING PHP) with open(‘inl input’, 'a') as fifo:
fifo.write(json.dumps(smartdata)+"\n") fifo.close() # ...

3.5.2. Loading previous data

Daemon receives its entry from its respective input file.
However, a Daemon can also request historical data executing an importer to complete its input file.

The following piece of code represents an example of a daemon calling a data importer
noooooo

... if not os.path.exists("inl input"): os.system("./get data.py <parameters>") ...
3.5.3. Inserting new data

In case the workflow does not change the SmartData, it may insert the processed SmartData on
other time Series through a data inserter. This script must create a different Series for the new data.
A possibility is to use the very same series configuration but with another dev.

The following piece of code represents a daemon calling an export script to create the new series
noooooo

... if os.path.exists("put data.py"): os.system("./put data.py <parameters>) ...
3.5.4. Notifications

Workflows on the platform can produce notifications on the processed data. These notifications carry
information related to faults and abnormalities on the data. The SmartData, in JSON format, has a
notification field ("notify") appended to its structure before returning to the insertion API. The
following PHP code snippet depicts the process of adding the notify information to the SmartData
JSON.

0o0oooo

https://epos.lisha.ufsc.br/ 8/01/2026 17

... $smartdata = json decode($argv[1],false); // 0x84924964 == 2224179556 == temperature if
($smartdata->unit == 2224179556 && $smartdata->value < 0) { $smartdata->notify = array(
'severity' => 100, 'description' => 'Invalid value for temperature in SI unit (Kelvin)'); } echo
json encode($smartdata); /Send smartdata back to API ...

Whenever a notify structure is attached to the returned SmartData JSON, the platform will log the
information on the API log files. A notification severity control is recommended to avoid excessive
notification entries on the API logs. A severity threshold can be specified during the workflow
building so that a notify structure would only be added to the processed SmartData when the
notifications reach the workflow severity threshold.

The daemon process handles the current severity level and the severity threshold. The verification is
done during insertions and can be logged to auxiliary files to maintain persistency through multiple
executions.

Additionally, a workflow can be customized to communicate notifications to the domain owners, for
instance, by sending an email to the domain mail group. This information can also be brought to the
platform so that the API would perform the communication. The following is a PHP code snippet
depicting an example of the notifications handling on the API.

(0ooooo

private function notify(\stdClass $json) { if(isset($json->notify)) { $notification = "Domain:
{$this-> domain}. Data irregularity."; if(isset($json->notify->description)) { $notification .="
Description: {$json->notify->description}."; } if(isset($json->notify->severity)) { //threshold can
be either defined by the workflow or by a standard value (100% in this case) //
isset($json->notify->severity threshold) $notification .= " Severity level:
{$json->notify->severity}."; if ($json->notify->severity > 100) { //send mail or message bus } }
//log notification self::debug X($notification); } }

Output workflows and Search workflows can also produce notifications. However, the API will not
handle those notifications since data processed by them is directly returned to the user.

3.6. Data Searching

Method: POST
URL: https://iot.lisha.ufsc.br/api/search.php

A Search Al Workflow is a server-side code capable of searching for specific data patterns using one
or multiple data matching policies and Al algorithms. Similar to the IoT Platform, a Search Al

Workflow is a space-time operation that, instead of using the typical geographic search engine built
in the Platform to collect data, runs a query using the specified space-time region as the parameter.

This method queries for data following, but not limited to, a SmartData Series and the specified
domain, defined through the IoT Platform procedure. The query and data handling processes are
specific to the search code related to the domain.

The workflow attribute specifies the "ID" of the selected Workflow. A secondary JSON object, named
parameter, is a customizable object to provide additional information to the Search Workflow. The
semantics of the received parameters are directly related to the Search Workflow. For instance, a
pattern searching algorithm can interpret the parameters as a list of SmartData that represents the
desired pattern. However, parameters are not necessarily SmartData objects and are free-form
key/value pairs. The parameters are made available to the Search Workflow by the Backend API
when parsing the Search request. The following is an example of a Search request body with a

https://epos.lisha.ufsc.br/ 8/01/2026 18

https://iot.lisha.ufsc.br/api/search.php
https://epos.lisha.ufsc.br/IoT+Platform#Data_Querying
https://epos.lisha.ufsc.br/IoT+Platform#SmartData_Series
https://epos.lisha.ufsc.br/IoT+Platform#Authentication_and_Authorization

customizable parameter object:

0o0oooo

"series": Object { "version" : 1.1, "unit" : unsigned long, "x" : long, "y" : long, "z" : long, "r" :
unsigned long, "t0" : unsigned long long, "tf" : unsigned long long, "uncertainty" : unsigned long,
"workflow" : unsigned long }, "parameter” : Object { ... } }

Search Workflows are stored on the same directory of regular Workflows from the same domain (i.e.,
"bin/workflow/<domain>/"). Search Workflows are named "search" followed by the Workflow
number ("ID"). For instance, "searchl" stands for Search Workflow 1. Similar to regular workflows,
for security purposes, installing a Search Workflow code requires a system admin to intermediate
the operation, but the code itself can be user-defined for the specific domain of interest.

The Series and the parameter objects are made available as arguments 1 and 2 from the argument
vector, where argument 1 corresponds to the provided Series and argument 2 corresponds to the
parameter object. Search Workflows return data to the API through console prints. Thus, the Search
Workflow can only print the final JSON object during its execution. The output of a Search Workflow
must be a set of SmartData, possibly with multiple devs and units.

An example of a search algorithm is presented below:

0000ooo

#!/usr/bin/php <?php require once(DIR .'/../../smartdata/SmartAPI.php'); use
SmartData\SmartAPI\Internals\{JsonAPI, BinaryAPI}; use SmartData\{Series, Backend V1 1,
Credentials, Config}; function get data($json) { $json aux = json decode($json);
list($credentials,$series,$aggregator,$options) = JsonAPI::parse get($json aux); $DOMAIN =
$credentials->domain; $cred = new Credentials($DOMAIN, $username, $password); $backend =
new Backend V1 1($cred, true); $response = $backend->query($series); return

json encode($response); } $series param = json decode($argv[1]); $options param =

json decode($argv([2]); $seriesl = array('series' => array('version' => "1.1", 'unit' =>
2224179556, 'x' => $series param->X, 'y’ => $series param->y, 'z' => $series param->z, 't =>
$series param->r, 't0' => $series param->t0, 'tl' => $series param->tl, 'dev' =>

$series param->dev, 'workflow' => 0)); $data = json decode(get data(json encode($seriesl)));
$series = $data->series; $response _json = array('series' => array()); $index = 0; foreach ($series
as &$smartdata) { $temp celsius = $smartdata->value - 273.15; // kelvin to celsius degrees if
($temp celsius < 0 && $temp celsius > 45) $response_json[$index++] = $smartdata; }
unset($smartdata); echo json encode($response json);

3.7. Response codes

The HTTP response codes are used to provide a response status to the client.
Possible response codes for an API request:

e 200:
o get.php: it means that a query has been successfully completed, and the response contains
the result (which may be empty)
e 204:
o create.php: it means that the series has been created successfully (there is no content in
the response).
e 400: it means there is something wrong with your request (bad format or inconsistent field).

https://epos.lisha.ufsc.br/ 8/01/2026 19

e 401: it means that you are not authorized to manipulate the domain specified.

3.8. Plotting a dashboard with Grafana
To plot a graph, do the following:

e 1. Inside Grafana's interface, go to Dashboards => Create your first dashboard => Graph.

e 2. Now you should be seeing a cartesian plane with no data-points, click on Panel Title =>
Edit.

e 3. This should take you to the Queries tab. Now you can choose your Data Source and put its
due information.

e 4. If you are using SmartData UFSC Data Source, fill the Interest and Credential fields with
the information used for insertion (see ((IoT Platform|#Create series|Section Create]).

e 5. You can tweak your plotting settings by using the Visualization tab. Save your Dashboard
by hitting Ctrl+S.

After doing these steps, the information should be shown instantly.

4. Binary API for SmartData Version 1.1

To save energy on the IoT wireless, battery-operated network, the platform also accepts SmartData
structures, encoded as binary, considering 32-bit little-endian representation. Each data point is sent
as a concatenation of the Series and the SmartData structures in binary representation, totaling 78
bytes.

struct Series { unsigned char version; unsigned long unit; long x; long y; long z; unsigned long r;
unsigned long long t0; unsigned long long tf; } struct SmartData { unsigned char version;
unsigned long unit; double value; unsigned long uncertainty; long x; long y; long z; unsigned long
dev; unsigned long long t; }

4.1. Create series (Binary)

 Create follows the same semantic presented in Create Series.

Method: POST
URL for create: https://iot.lisha.ufsc.br/api/create.php
Body: Series

Byte 36 32 28 24 20 16 8 0

version unit X y vA r t0 tf

4.2. Insert data (Binary)

Method: POST
URL: https://iot.lisha.ufsc.br/api/put.php
Body: SmartData

Byte 40 36 28 24 20 16 12 8 0

version unit value uncertainty X y z dev t

https://epos.lisha.ufsc.br/ 8/01/2026 20

https://epos.lisha.ufsc.br/IoT+Platform#Create_series
https://iot.lisha.ufsc.br/api/create.php
https://iot.lisha.ufsc.br/api/put.php

4.2.1. Binary Multi SmartData

The binary version of Multi SmartData uses different URLs to access the API. Each URL handles a
specific type of data repetition. Thus, the method can attend to the specificities of each binary
format. There are three cases:

MultiValue SmartData

In the binary format, the flag's bit 0 shall be set if the period is defined in the header, or unset if
the offset is defined for each data point. The flag's bit 1 shall be set if the uncertainty is defined in
the header, or unset if it is transmitted with each data point. Therefore, the packet header can have
a length of 30, 34, or 38 bytes.

Method: POST

URL: https://iot.lisha.ufsc.br/api/mv put.php

Body: MultiDevice SmartData

Binary Format:

Packet Header (first 30 bytes):

Byte 29 25 21 17 13 5 1 0 @ @)

version unit X y z t0 dev flag period uncertainty

The payload will also vary from 16 to 8 bytes. If period and uncertainty are informed in the header,
only the value of each data point will be included in the payload. Otherwise, each value is sent along
with both attributes following the table below.

Packet Payload (N x 16 bytes):

Byte 12 4 0

offset value uncertainty

MultiDeviceSmartData

Method: POST

URL: https://iot.lisha.ufsc.br/api/md put.php
Body: MultiDevice SmartData

Packet Header (first 25 bytes):

Byte 24 20 16 12 8 0

version unit X y yA t0

Packet Payload (N x 20 bytes):

Byte 16 8 4 0

offset value dev uncertainty

https://epos.lisha.ufsc.br/ 8/01/2026 21

https://iot.lisha.ufsc.br/api/mv_put.php
https://iot.lisha.ufsc.br/api/md_put.php

MultiUnitSmartData

Method: POST

URL: https://iot.lisha.ufsc.br/api/mu put.php
Body: MultiUnit SmartData

Binary Format:
Packet Header (first 21 bytes):

Byte 20 16 12 8 0

version X y z t0

Packet Payload (N x 24 bytes):

Byte 20 16 8 4 0

unit offset value dev uncertainty

4.3. Version format

The version field has 8 bits and is composed of a major and a minor version. The major version is
related to API compatibility. On the other hand, the minor version defines some properties of the
SmartData. For instance, minor version 1 defines a stationary SmartData, while minor version 2 a
mobile SmartData.

enum { STATIONARY VERSION = (1 << 4) | (1 << 0), MOBILE_VERSION = (1 << 4) | (2 << 0),
}
5. Client Authentication

The EPOS IoT API infrastructure supports authentication with client certificates. To implement it,
you should request a client certificate to LISHA through the Mailing List.

If you are using the eposiotgw script to send SmartData from a TSTP network to IoT API
infrastructure, you should do the following steps to authenticate with the client certificate.

1. Use eposiotgw available on EPOS GitLab

e 2. Copy the files .pem and .key provided by LISHA to the same directory of the eposiotgw script

« 3. Call eposiotgw using the parameter -c with the value equal to the name of the certificate file
WITHOUT the extension. Both files (.pem and .key) should have the same basename.

If you are using esp8266 with axTLS library, you should convert the certificates to a suitable format,
with two .der files. To do this, follow the instructions below:

openssl pkcs12 -export -clcerts -in client-CERT.pem -inkey client-CERT.key -out client.p12 openssl
pkcsl2 -in client.p12 -nokeys -out cert.pem -nodes openssl pkcs12 -in client.p12 -nocerts -out
key.pem -nodes openssl x509 -outform der -in cert.pem -out cert.der openssl rsa -outform der -in

https://epos.lisha.ufsc.br/ 8/01/2026 22

https://iot.lisha.ufsc.br/api/mu_put.php
https://epos.lisha.ufsc.br/Mailing+List
https://gitlab.lisha.ufsc.br/epos/epos

key.pem -out key.der

6. Scripts

6.1. C++

6.1.1. Get Script Example
This script is based on httplib.

0o0oooo

#define CPPHTTPLIB OPENSSL SUPPORT #include "httplib.h" #include <iostream> using
namespace std; int main(void) { httplib::SSLClient cli("iot.lisha.ufsc.br", 443);

cli.enable server certificate verification(false); const char * series =
"{\"series\":{\"version\":\"1.2\",\"unit\": XXXXXXXX,\"t0\" : XXXXXXXX,\"t1\":XXXXXXXX,\"dev\": XXX
XXXXX,\"signature\":XXXXXXXX},\"credentials\": {\"domain\":\"XXXXXXXX\",\"username\":\"XXXX
XXXX\" \"password\":\"XXXXXXXX\"} }"; auto res = cli.Post("/api/get.php", series, strlen(series) ,
"text/plain"); if (res) { cout << res->status << endl; cout << res->get header value("Content-
Type") << endl; cout << res->body << endl; } else { cout << "error code: " << res.error() <<
std::endl; } return 0; }

6.2. Python
6.2.1. Get Script Example

The following python code queries luminous intensity data at LISHA from the last 5 minutes.

0o0oooo

#!/usr/bin/env python3 import time, requests, json get url ='https://iot.lisha.ufsc.br/api/get.php'
epoch = int(time.time() * 1000000) query = { 'series' : { 'version': '1.1', 'unit' : 2224179493,
/lequivalent to 0x84924925 = luminous intensity 'x' : 741868770, 'y' : 679816011, 'z' : 25285, 'r' :
10*100, 't0' : epoch - (5*60*1000000), 'tf' : epoch, 'dev' : 0 }, 'credentials' : { 'domain' :
'smartlisha’, 'username' : 'smartusername’, '‘password' : 'smartpassword' } } session =
requests.Session() session.headers = {'Content-type' : 'application/json'} response =
session.post(get url, json.dumps(query)) print("Get [", str(response.status code), "] (", len(query),
") ", query, sep=") if response.status code == 200: print(json.dumps(response.json(), indent=4,
sort keys=False))

6.2.2. Put Script Example

The following python code inserts a JSON with a certificate.

0o0oooo

#!/usr/bin/env python3 # To get an unencrypted PEM (without passphrase): # openssl rsa -in
certificate.pem -out certificate unencrypted.pem import os, argparse, requests, json,ss! from
requests.adapters import HTTPAdapter from requests.packages.urllib3.poolmanager import
PoolManager parser = argparse.ArgumentParser(description="EPOS Serial->IoT Gateway')
required = parser.add argument group('required named arguments') required.add argument('-
c','--certificate’, help="Your PEM certificate', required=True) parser.add argument(‘-u',"--url’,
help="'Post URL', default="https://iot.lisha.ufsc.br/api/put.php') parser.add argument('-j','--json’,
help='Use JSON API', required=True) args = vars(parser.parse args()) URL = args['url']

MY CERTIFICATE = [args['certificate']+'.pem', args|'certificate']+'.key'] JSON = args['json']
session = requests.Session() session.headers = {'Content-type' : 'application/json'} session.cert =

https://epos.lisha.ufsc.br/ 8/01/2026 23

https://github.com/yhirose/cpp-httplib

MY CERTIFICATE try: response = session.post(URL, json.dumps(JSON)) print("SEND",
str(response.status code), str(response.text)) except Exception as e: print("Exception caught:", e)

6.3. R
6.3.1. Get Script Example

The following python code queries Temperature data at LISHA from an arbitrarily defined time
interval.

0o0oooo

library(httr) library(rjson) library(xml2) get url <- "https://iot.lisha.ufsc.br/api/get.php" json body
<-'{ "series":{ "version":"1.1", "unit":0x84924964, "x":741868840, "y":679816441, "z":25300,
"r'":0, "t0":1567021716000000, "tf":1567028916000000, "dev":0, "workflow": 0 }, "credentials":{
"domain":"smartlisha" } }' res <- httr::POST(get url, body=json body, verbose()) res content =
content(res, as = "text") print(jsonlite::toJSON(res content))

The following code gets Temperature data at LISHA from the last 5 minutes.

0o0oooo

library(httr) library(rjson) library(xml2) get url <- "https://iot.lisha.ufsc.br/api/get.php" time <-
Sys.time() time 0 <-as.numeric(as.integer(as.POSIXct(time))*1000000) json body <- '{ "series":{
"version":"1.1", "unit":0x84924964, "x":741868840, "y":679816441, "z":25300, "r":0, "t0":'

json body <- capture.output(cat(json_body, time 0 - 5*60*1000000)) json_body <-
capture.output(cat(json_body, ',"tf":")) json _body <- capture.output(cat(json body, time 0))

end string <-', "dev":0, "workflow": 0 }, "credentials":{ "domain":"smartlisha" } }' json _body <-
capture.output(cat(json_body, end string)) res <- httr::POST(get _url, body=json_body, verbose())
res_content = content(res, as = "text") print(jsonlite::to]SON(res_content))

7. Troubleshooting

7.1. TLS support for Post-Handshake Authentication

TLS 1.3 has the Post-Handshake Authentication disabled by default. However, the IoT platform
requires PHA to securely connect with clients. This issue can be easily worked around with a custom

SSLContext forcing the use of TLS 1.2, which has PHA enabled by default. An example in Python
follows:

0o0oooo

import ssl ctx = ssl.SSLContext(ss]. PROTOCOL TLSv1 2) connection =
HTTPSConnection("iot.lisha.ufsc.br", 443, context=ctx);

Review Log

Ver Date Authors Main Changes

1.0 Feb 15, 2018 Caciano Machado Initial version

1.1 Apr4, 2018 César Huegel Rest API documentation

1.2 Apr4, 2020 Leonardo Horstmann Review for EPOS 2.2. and ADEG

1.3 Jun 27, 2020 José Luis Hoffmann, Leonardo Review for Insert Changes and ADEG

Horstmann, Roberto Scheffel

https://epos.lisha.ufsc.br/ 8/01/2026 24

1.4 Sep 30, 2020 Guto
1.5 Mar 16, 2022 Roberto Scheffel
1.6 May 24, 2022 Roberto Scheffel

1.7 December 16, 2022 Mateus Lucena

https://epos.lisha.ufsc.br/

8/01/2026

Major revision
Series Documentation update

Downsample "aggregator"
documentation added

Updated Prolog

25

	IoT Platform
	[Table of contents]
	Table of contents

	1. Prolog
	2. IoT Platform Overview
	2.1. SmartData
	2.2. SmartData Series
	2.3. Authentication and Authorization
	2.4. Usefull SmartData Units

	3. REST API for Stationary Objects
	3.1. Data Querying
	3.1.1. Data Aggregation
	3.1.2. Fault Injection
	3.1.3. Downsampling

	3.2. Series Creation
	3.2.1. Series Types and Modes
	3.2.2. Series Status
	3.2.3. Meaninful Types and Status

	3.3. Data Insertion
	3.3.1. Bulk Data Insertion
	3.3.2. Series Documentation

	3.4. Series Termination
	3.5. AI Workflows
	3.5.1. Persistency
	3.5.2. Loading previous data
	3.5.3. Inserting new data
	3.5.4. Notifications

	3.6. Data Searching
	3.7. Response codes
	3.8. Plotting a dashboard with Grafana

	4. Binary API for SmartData Version 1.1
	4.1. Create series (Binary)
	4.2. Insert data (Binary)
	4.2.1. Binary Multi SmartData

	4.3. Version format

	5. Client Authentication
	6. Scripts
	6.1. C++
	6.1.1. Get Script Example

	6.2. Python
	6.2.1. Get Script Example
	6.2.2. Put Script Example

	6.3. R
	6.3.1. Get Script Example

	7. Troubleshooting
	7.1. TLS support for Post-Handshake Authentication

	Review Log

