
EPOSMote III Programming
Table of contents

EPOSMote III Programming
Creating a .hex image
1. Using JTag

1.1. Load an image directly
1.2. Load EPOS' USB bootloader
1.3. Load EPOS' Network bootloader
1.4. Enable EPOSMote III's ROM Serial bootloader

2. Using EPOS' USB bootloader
3. Using EPOS' Network bootloader
4. Using the ROM Serial bootloader
5. Help!

Creating a .hex image
There are currently four ways you can load an image to a local EPOSMote III device. For all of them, you
need a .hex file, which you can create with EPOS' default makefile using the "flash" command, like so:

The resulting image shall be img/.hex

Keep in mind that for simple tests, you can use our remotely-accessible EPOSMote III boards.

1. Using JTag
You only need this method if you have a device that has never been programmed before. In case your
device already has a bootloader loaded, you can skip to the bootloader's respective section.You need JTag
to accomplish one of the following:

Load an image directly
Load EPOS' USB bootloader
Load EPOS' Network bootloader
Enable EPOSMote III's ROM Serial bootloader

You are going to need JLinkExe, which you can download from SEGGER's website. It is convenient to
follow the steps in the .tgz's README to enable user-level access to the JTag device on Linux.

1.1. Load an image directly

To load an image directly with JTag, you can either use JLinkExe manually (1), or use EPOS' default
makefile (2). If you wish to compile an application to load with JTag and run without EPOS' bootloader,
you need to make the following adjustments to the memory map in
include/machine/cortex_m/emote3_traits.h (remember to run make veryclean after):

With JLinkExe (replace with the name of the image you want to load):1.



$ make APPLICATION=<your_application> flash



MEM_BASE = 0x20000000; APP_LOW = 0x20000000; APP_CODE = 0x00200000; APP_DATA =
0x20000000; PHY_MEM = 0x20000000; SYS = 0x00200000; SYS_CODE = 0x00200000; SYS_DATA =
0x20000000;



#Creating_a_.hex_image
https://www.lisha.ufsc.br/article408
https://www.segger.com/jlink-software-beta-version.html

It is normal to see messages such as "Failed to identify target. Trying again with slow (4 kHz) speed."
If everything was successful, you should see a message like this after the loadbin command:

If you are compiling a new EPOS image, you can instead upload it to the device directly with EPOS'2.
default makefile:

1.2. Load EPOS' USB bootloader

Get the latest version of EPOS' USB bootloader:1.

Then load it into the device using JLinkExe (see 1.1.1).2.

1.3. Load EPOS' Network bootloader

Get the latest version of EPOS' Network bootloader:1.

Then load it into the device using JLinkExe (see 1.1.1).2.

1.4. Enable EPOSMote III's ROM Serial bootloader

TODO

2. Using EPOS' USB bootloader
If your device is loaded with EPOS' USB bootloader (as in 1.1.2), you can program your EPOSMote III via
USB. You need a copy of EPOS' source and python3 with the pyserial module.

Note: when using EPOSMote III with USB, the "modemmanager" Linux service might get in the way. It is
recommended to stop this service. In Ubuntu, you can do this with the command:

You can also disable this service permanently with:

$ JLinkExe J-Link>device = cc2538sf53 J-Link>h J-Link>erase J-Link>loadbin
<your_application>.hex,0 J-Link>exit



Downloading file [<your_application>.hex]...Info: J-Link: Flash download: Flash programming
performed for 2 ranges (14336 bytes) Info: J-Link: Flash download: Total time needed: 0.461s
(Prepare: 0.091s, Compare: 0.007s, Erase: 0.153s, Program: 0.194s, Verify: 0.003s, Restore:
0.010s) O.K.



$ make APPLICATION=<your_application> deploy J-Link>exit



$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3_bootloader/img/emote3_usb_bootloa
der.hex .



$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3_bootloader/img/emote3_nic_bootloa
der.hex .



$ sudo stop modemmanager



echo "manual" > /etc/init/modemmanager.override

Conect your EPOSMote III with a USB cable and check which device it shows up as. For example:1.

Type in the following command, but do not press Enter:2.

Then reset the mote and issue the command (press Enter).

After these steps, your application should be running. Everytime the mote is reset, the bootloader will run
and wait for a handshake for one second. If none is received and there is an image already loaded, it will
start execution of that image.

Note: if you receive a message from python "ImportError: No module named 'serial'", you should install
the python pip package. On Ubuntu:

Note: Kernel linux-image-3.13.0-65-generic 3.13.0-65 breaks Python based Serial communication. You
might need to downgrade your kernel to use the programmer script.

3. Using EPOS' Network bootloader
If your device is loaded with EPOS' Network bootloader (as in 1.1.3), you can program your EPOSMote III
via radio. You need a copy of EPOS' source, python3 with the pyserial module and a second mote
connected to the PC to act as a programmer.

Get the latest version of the code to run on the programmer mote:1.

or: (Warning: the following image is currently unavailable, because programming the NIC
programmer using the USB bootloader is not working correctly)

Load it into the programmer mote using an appropriate method as explained above (JTag, USB ...). If2.
you are programming the programmer mote via JTag, you need the first image. Otherwise, if you are
using the USB bootloader, you need the second one. Warning: programming the NIC programmer
using the USB bootloader is currently not working correctly
Reset the programmer mote, connect it to the PC via USB and wait until it blinks its led a few times3.
and leaves it on (it should take a few seconds).
Check which device it shows up as. For example:4.

Type in the following command, but do not press Enter:5.



$ dmesg | tail [104871.262738] cdc_acm 1-1.1:1.0: ttyACM0: USB ACM device



$ sudo python3 tools/emote3_programmer/emote3_programmer.py -d /dev/ttyACM0 -f
img/<your_application>.hex



sudo apt-get install python3-pip sudo apt-get install python3-serial



$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3_bootloader/img/emote3_nic_programme
r_via_jtag.hex .



$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3_bootloader/img/emote3_nic_programme
r_via_bootloader.hex .



$ dmesg | tail [104871.262738] cdc_acm 1-1.1:1.0: ttyACM0: USB ACM device

https://www.mail-archive.com/kernel-packages@lists.launchpad.net/msg137077.html

Turn on the mote that has the Network bootloader loaded, and issue the command in the previous6.
step (press Enter). It is normal to see a few "Wrong ACK" messages in this step.

After these steps, your application should be running on the mote that has the Network bootloader loaded.
Every time the mote is reset, the bootloader will run and wait for a handshake for one second. If none is
received and there is an image already loaded, it will start execution of that image.

Note: Kernel linux-image-3.13.0-65-generic 3.13.0-65 breaks Python based Serial communication. You
might need to downgrade your kernel to use the programmer script.

4. Using the ROM Serial bootloader
TODO

5. Help!
If you have any questions or problems with this process, please contact me: davir@lisha.ufsc.br



$ sudo python3 tools/emote3_programmer/emote3_programmer.py -d /dev/ttyACM0 -f
img/<your_application>.hex

https://www.mail-archive.com/kernel-packages@lists.launchpad.net/msg137077.html
mailto:davir@lisha.ufsc.br

	EPOSMote III Programming
	[Table of contents]
	Table of contents

	Creating a .hex image
	1. Using JTag
	2. Using EPOS' USB bootloader
	3. Using EPOS' Network bootloader
	4. Using the ROM Serial bootloader
	5. Help!

