
EPOS 2 User Guide
Software/Hardware Integration Lab at UFSC

https://epos.lisha.ufsc.br/ 14/01/2026 1

EPOS 2.2 User Guide

Table of contents
EPOS 2.2 User Guide
1. Introduction

1.1. EPOS Overview
1.2. OpenEPOS License
1.3. Main Features

2. Setting up EPOS
2.1. Downloading EPOS
2.2. Downloading the toolchain

2.2.1. GCC
2.2.2. as86/ld86
2.2.3. 32-bit libs

2.3. Installing
3. Running EPOS

3.1. Compiling
3.2. Running

3.2.1. Running on Bare Metal
3.2.2. Running on Virtualized Host

3.3. Configuring
4. EPOS API

4.1. Memory Management
4.1.1. Dynamic Memory (Heap)
4.1.2. Stacks
4.1.3. Memory Segments
4.1.4. Address Spaces

4.2. Process Management
4.2.1. Task
4.2.2. Thread
4.2.3. RT_Thread
4.2.4. Scheduler

4.3. Process Coordination (Synchronizers)
4.3.1. Semaphore
4.3.2. Mutex
4.3.3. Condition

4.4. Timing
4.4.1. Clock
4.4.2. Chronometer
4.4.3. Alarm
4.4.4. Delay

4.5. Communication
4.5.1. Link
4.5.2. Port
4.5.3. Mailbox
4.5.4. Channel
4.5.5. Network
4.5.6. IPC

#EPOS_2.2_User_Guide

https://epos.lisha.ufsc.br/ 14/01/2026 2

4.5.7. TSTP
4.5.7.1. Configuration
4.5.7.2. Bootstrap
4.5.7.3. Interaction between components

4.5.7.3.1. Zero-copy Buffer Management
4.5.7.3.2. Metadata Gathering
4.5.7.3.3. Event Propagation

4.5.7.4. Coordinates
4.5.8. TCP/IP

4.5.8.1. ARP
4.5.8.2. DHCP
4.5.8.3. IP
4.5.8.4. ICMP
4.5.8.5. UDP
4.5.8.6. TCP

4.5.9. Networking Configuration
4.6. Sensing and Actuation (Wireless Sensor Network)

4.6.1. SmartData
4.6.2. Unit
4.6.3. Persistent Storage
4.6.4. Transducers

4.7. Utilities
4.7.1. Containers

4.7.1.1. Linkage Elements and Ranks
4.7.1.2. Iterators
4.7.1.3. Vector
4.7.1.4. Lists
4.7.1.5. Queue
4.7.1.6. Hash

4.7.2. OStream
4.7.3. Random
4.7.4. CRC
4.7.5. Spinlock
4.7.6. Observer

4.7.6.1. Observer/Observed
4.7.6.2. Conditional Observer x Conditionally Observed
4.7.6.3. Unconditional Observer x Unconditionally Observed with Data
4.7.6.4. Conditional Observer x Conditionally Observed with Data

4.7.7. Handler
4.7.8. Buffer (Zero-Copy)

4.8. Hardware Mediators
4.8.1. CPU
4.8.2. MMU
4.8.3. TSC
4.8.4. Machine
4.8.5. IC
4.8.6. RTC
4.8.7. Timers
4.8.8. UART

4.8.8.1. Example
4.8.9. NIC

https://epos.lisha.ufsc.br/ 14/01/2026 3

4.8.10. Radio
4.8.11. EEPROM

THIS MUST BE RELOCATED
Review Log

1. Introduction
This document is a reference guide to the EPOS API. It is designed focusing on application
development with EPOS 2.2 (for other guides visit EPOS Documentation).

1.1. EPOS Overview
The Embedded Parallel Operating System (EPOS) aims at automating the development of
dedicated computing systems, so that developers can concentrate on what really matters: their
applications. EPOS relies on the Application-Driven Embedded System Design Method
(ADESD) proposed by Antônio Augusto Fröhlich to design and implement both software and
hardware components that can be automatically adapted to fulfill the requirements of particular
applications. Additionally, EPOS features a set of tools to select, adapt, and plug components into an
application-specific framework, thus enabling the automatic generation of an application-oriented
system instance. Such an instance consists of a hardware platform implemented in terms of
programmable logic, and the corresponding run-time support system implemented in terms of
abstractions, hardware mediators, scenario adapters and aspect programs.

The deployment of ADESD in EPOS is helping to produce components that are highly reusable,
adaptable, and maintainable. Low overhead and high performance are achieved by a careful
implementation that makes use of generative programming techniques, including static
metaprogramming. Furthermore, the fact that EPOS components are exported to users by means of
coherent interfaces defined in the context of the application domain largely improves usability. All
these technological advantages are directly reflected in the development process, reducing NRE
costs and the time-to-market of software/hardware integrated projects.

OpenEPOS is a streamlined version of EPOS in which more complex, less stable research
components have been removed to produce a system that can be easily used for industrial or
university applications.

1.2. OpenEPOS License
OpenEPOS 2.2 is licensed under the The GNU General Public Licence 2.0. In this site, EPOS and
OpenEPOS are used interchangeably to designate the specific set of components publicly released
in this site under the GPL license. Other components, not listed in this documentation and not
released through this site, are usually subject to more restrictive licenses. For additional
information, please contact epos@lisha.ufsc.br.

Older versions of OpenEPOS are licensed under EPOS Software License v1.0.

1.3. Main Features
An overview of the features currently implemented in each version as well as a list of supported
architectures and machines (i.e. platforms) is shown below. You can download the releases from
here.

Feature Release

 1.0 1.1 1.2 2.0 2.1 2.2

https://epos.lisha.ufsc.br/EPOS+Documentation
https://epos.lisha.ufsc.br/dl2
https://epos.lisha.ufsc.br/dl2
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
mailto:epos@lisha.ufsc.br
https://epos.lisha.ufsc.br/EPOS+Software+License+v1.0
https://epos.lisha.ufsc.br/EPOS+Software

https://epos.lisha.ufsc.br/ 14/01/2026 4

Architectures AVR8 √ √ √ − − −

 ARMv3 (ARM7) − √ √ − − −

 ARMv7-M − − − √ √ √

 x86 (IA-32) √ √ √ √ √ √

 x86_64 − − √ − − −

 PowerPC ≈ √ √ − − −

 MIPS ≈ √ √ − − −

Machines EPOSMote I (AVR8) √ − − − − −

 EPOSMote II (ARM7TDI) − √ √ − − −

 EPOSMote III (ARM Cortex-M3) − − − √ √ √

 PC √ √ √ √ √ √

 Atmega16 (AVR8) √ √ √ − − −

 Atmega128 (AVR8) √ √ √ − − −

 Atmega1281 (AVR8) √ √ √ − − −

 At90can128 (AVR8) √ √ √ − − −

 ML310 (PPC32) ≈ √ √ − − −

 LEON3 ≈ √ √ − − −

 Plasma (MIPS) ≈ √ √ − − −

LM3S9B96 (ARM Cortex-M3@QEMU) − − − √ √ √

Realview PBX (ARM Cortex-A9@QEMU) − − − − √ √

Raspberry PI3 (ARM Cortex-A53) − − − − − √

Xilinx Zynq-7000 (Cortex-A9MP) − − − √ √ √

Devices UART √ √ √ √ √ √

 USART √ √ √ − − √

 Ethernet √ √ √ √ √ √

 Radio (IEEE 802.15.4) √ √ √ √ √ √

 EEPROM √ √ √ √ √ √

 Flash √ √ √ √ √ √

 Timer √ √ √ √ √ √

 SPI √ √ √ √ √ √

PMU − − − − √ √

Process Multithreading √ √ √ √ √ √

 Real-time Scheduling √ √ √ √ √ √

 Multicore (SMP) √ √ √ √ √ √

 Synchronization √ √ √ √ √ √

Multitasking − − − √ √ √

https://epos.lisha.ufsc.br/ 14/01/2026 5

Non-Intrusive Monitoring − − − − − √

Memory Dynamic Memory Allocation √ √ √ √ √ √

 Scratch-pad Memory − ≈ √ √ √ √

 Flash √ √ √ √ √ √

Timing Timed Events √ √ √ √ √ √

 Chronometer √ √ √ √ √ √

 Real-time Clock √ √ √ √ √ √

 Watch-dog Timer − − √ √ √ √

Communication C-MAC ≈ √ √ − − −

TSTP − − − √ √ √

IEEE 802.15.4 − − − √ √ √

 ELP ≈ √ √ √ √ √

 ADHOP ≈ √ √ − − −

 TCP/IP ≈ √ √ √ √ √

 SIP − ≈ √ − − −

 RTP − ≈ √ − − −

 PTP − ≈ √ − √ √

HeCoPS − √ − √ √ √

Power Power Management API √ √ √ ≈ ≈ ≈

 Energy-aware Scheduling √ √ √ ≈ √ √

 Energy-aware, Real-time Scheduling √ √ √ ≈ √ √

DVFS √ − − − √ √

SmartData Sensing − − − − √ √

Actuating − − − − √ √

Clerk − − − − − √

Machine Learning − − − − − √

Development Tools GCC 4.0.x √ √ √ − − −

 GCC 4.4.x √ √ √ √ √ √

 GCC 7.2.x − − − − √ √

 GCC 8.3.1 − − − − − √

QEMU √ √ √ √ √ √

 GDB on QEMU − √ √ √ √ √

2. Setting up EPOS
2.1. Downloading EPOS
You can download OpenEPOS releases from the download page and development versions from
LISHA's GitLab.

https://epos.lisha.ufsc.br/EPOS+Software
https://gitlab.lisha.ufsc.br/epos/epos/

https://epos.lisha.ufsc.br/ 14/01/2026 6

2.2. Downloading the toolchain
2.2.1. GCC
Recent versions of EPOS can go with any (recent) GCC version. However, since EPOS is itself the
operating system, the compiler cannot rely on a libc compiled for another OS (such as LINUX). A
cross-compiler is needed even if your source and target machines are x86-based PCs. You can use
your distro's cross-compilers (version 2.2 onwards), download a precompiled GCC for EPOS from the
downloads page (version 2.1 or older), or compile a newlib-based toolchain yourself following these
instructions. In case you want to compile EPOS for RISC-V (version 2.1 onwards) and your OS does
not have a native cross-compiler package, download a precompiled GCC for EPOS on the downloads
page (available for Fedora 32 onwards and Ubuntu 18.04 onwards) or compile a 32 bits linux-based
toolchain following the instructions on the official toolchain repository.

Distribution Target
Architecture

Packages

Fedora x86/x86_64 binutils-x86_64-linux-gnu gcc-c++-x86_64-linux-gnu

Fedora 32 bits ARM arm-none-eabi-binutils-cs arm-none-eabi-gcc-cs-c++
arm-none-eabi-newlib

Fedora 32 bits RISC-V autoconf automake python3 libmpc-devel mpfr-devel
gmp-devel gawk bison flex texinfo patchutils gcc
gcc-c++ zlib-devel expat-devel

Ubuntu 18.04
onwards

x86/x86_64 binutils-x86-64-linux-gnu bin86

Ubuntu 18.04
onwards

32 bits ARM binutils-arm-none-eabi gcc-arm-none-eabi

Ubuntu 18.04
onwards

32 bits RISC-V pkg-config libglib2.0-dev libpixman-1-dev autoconf
automake autotools-dev curl python3 libmpc-dev
libmpfr-dev libgmp-dev gawk build-essential bison
flex texinfo gperf libtool patchutils bc zlib1g-dev
libexpat-dev

2.2.2. as86/ld86
If you don't have the "as86" command installed, you need to install the bin86 (Ubuntu) or dev86
(Fedora) package. It is used to compile the PC's bootstrap code (which must be Intel 8086).

2.2.3. 32-bit libs
If your host is a 64-bit operating system, you will need to install a set of 32-bit libraries. The table
below shows the packages.

Distribution Packages

Ubuntu all versions ia32-libs lib32stdc++6 libc6-i386 libc6-dev-i386

Ubuntu 16.04 onwards Ubuntu all versions packages substituting ia32-libs for lib32z1
lib32ncurses5 libbz2-1.0:i386

Ubuntu 17.04 Ubuntu all versions packages and gcc-multilib g++-multilib

Ubuntu 18.04 Ubuntu all versions packages and gcc-multilib g++-multilib

https://epos.lisha.ufsc.br/EPOS+Software
https://epos.lisha.ufsc.br/GCC+Toolchain+for+EPOS
https://epos.lisha.ufsc.br/GCC+Toolchain+for+EPOS
https://epos.lisha.ufsc.br/EPOS+Software
https://epos.lisha.ufsc.br/EPOS+Software
https://github.com/riscv/riscv-gnu-toolchain

https://epos.lisha.ufsc.br/ 14/01/2026 7

Fedora glibc-devel.i686 libstdc++.i686 libstdc++-devel zlib.i686

2.3. Installing
Simply open a release tarball or clone a branch from the GitLab at the place you want EPOS to be
installed. You don't need to bother about the chosen path nor set any environment variable. EPOS is
fully self-contained.

If you also downloaded a toolchain tarball, open it at /usr/local/<architecture> whenever possible. If
you do not have access to that path, you'll have to adjust the makedefs file in EPOS' main directory
accordingly.

For instance, if you downloaded the ia32 toolchain, you should extract it at
/usr/local/ia32/gcc-7.2.0. If you downloaded the arm toolchain for EPOSMote III, you should
extract it at /usr/local/arm/gcc-7.2.0

3. Running EPOS
3.1. Compiling
At the directory where you installed EPOS' source code, just type:

The system will be configured and compiled (i.e. generated) successive times for each application
found in the app directory. Both software and hardware components will be generated according to
each application's needs and stored in the img directory.

If you have multiple applications or multiple deployment scenarios, but want to operate on a single
one, you can specify it using the APPLICATION parameter like this:

If everything goes right, you should end with something like this:

3.2. Running
First of all, you'll need to install a platform-specific back-end for EPOS to run on. During
development, this is usually a QEMU virtual machine for your target architecture (e.g. qemu-system-
i386, qemu-system-arm). Then, simply type



$ make



$ make APPLICATION=hello



EPOS bootable image tool EPOS mode: library Machine: pc Model: legacy_pc Processor: ia32 (32
bits, little-endian) Memory: 262144 KBytes Boot Length: 512 - 512 (min - max) KBytes UUID:
a5a205927f92887e Creating EPOS bootable image in "hello.img": Adding bootstrap
"/home/guto/epos/merge/img/boot_legacy_pc": done. Adding setup
"/home/guto/epos/merge/img/setup_legacy_pc": done. Adding application "hello": done. Adding
system info: done. Adding specific boot features of "legacy_pc": done. Image successfully
generated (69784 bytes)!



http://www.qemu.org/

https://epos.lisha.ufsc.br/ 14/01/2026 8

Note: for the EPOSMote III platform, please refer to the EPOSMote III Programming Tutorial.

3.2.1. Running on Bare Metal
In principle, there is nothing to be done to run EPOS on a real machine (i.e. without QEMU). Note,
however, that there are many flavors of x86 and ARM CPUs and although EPOS tries not to make
use of non-standard CPU features, it may happen that your real hardware has peculiarities that are
not handled by EPOS. Furthermore, there are lots of buggy devices out there and commercial
operating systems are full of workarounds to avoid igniting (often unrecoverable) problems. This is
not true for EPOS!

3.2.2. Running on Virtualized Host
You can run EPOS on a qemu-kvm to get access to platform features not emulated by QEMU. Intel
x86 PMU, for instance, is only available with KVM. However, many other aspects of QEMU differ in
this mode. Check KVM FAQ for details.

3.3. Configuring
Trait classes are EPOS main configuration mechanism. Whenever an application-specific instance of
EPOS is produced (that is, whenever EPOS is built), the builder looks for a file named
$APPLICATION/$APPLICATION_traits.h in the app directory. For instance, if the application's main
file is app/producer_consumer/producer_consumer.cc, then the builder will look for a file named
app/producer_consumer/producer_consumer_traits.h to configure EPOS accordingly.

Detailed information about the Traits of each component in EPOS is given in section 4, but a typical
traits file usually looks like this:

A set of configuration tokens and default values is kept at include/system/traits.h:

$ make [APPLICATION=<application>] run



#ifndef __traits_h #define __traits_h #include <system/config.h> __BEGIN_SYS template<>
struct Traits<Build>: public Traits<void> { static const unsigned int MODE = LIBRARY; static
const unsigned int ARCHITECTURE = IA32; static const unsigned int MACHINE = PC; static
const unsigned int MODEL = Legacy_PC; static const unsigned int CPUS = 1; static const
unsigned int NODES = 1; // (> 1 => NETWORKING) static const unsigned int
EXPECTED_SIMULATION_TIME = 60; // s (0 => not simulated) }; // Utilities template<> struct
Traits<Debug>: public Traits<void> { static const bool error = true; static const bool warning =
true; static const bool info = false; static const bool trace = false; }; ... __END_SYS #endif (END)



emplate<typename T> struct Traits { // EPOS software architecture (aka mode) enum {LIBRARY,
BUILTIN, KERNEL}; // CPU hardware architectures enum {AVR8, H8, ARMv4, ARMv7, ARMv8,
IA32, X86_64, SPARCv8, PPC32}; // Machines enum {eMote1, eMote2, STK500, RCX, Cortex, PC,
Leon, Virtex}; // Machine models enum {Unique, Legacy_PC, eMote3, LM3S811, Zynq,
Realview_PBX, Raspberry_Pi3}; // Serial display engines enum {UART, USB}; // Life span
multipliers enum {FOREVER = 0, SECOND = 1, MINUTE = 60, HOUR = 3600, DAY = 86400,
WEEK = 604800, MONTH = 2592000, YEAR = 31536000}; // IP configuration strategies enum
{STATIC, MAC, INFO, RARP, DHCP}; // SmartData predictors enum :unsigned char {NONE, LVP,

https://epos.lisha.ufsc.br/IoT+with+EPOS#EPOS_EPOSMote_III
http://www.linux-kvm.org/page/FAQ
https://en.wikipedia.org/wiki/Trait_(computer_programming)
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#EPOS_API

https://epos.lisha.ufsc.br/ 14/01/2026 9

Debugging is therefore enabled by default for critical errors. In order to collect execution traces, a
programmer would make:

Traits<Debug>::trace = true
To build for EPOSMote III, they would adjust Traits<Build> like this:

Note: From EPOS 2.0, makefile customizations are no longer needed. Makefiles now parse the
application's traits to adjust themselves and produce a proper instance of EPOS.
Note: EPOS makefiles care for cleaning the configuration between any two builds, but if you change
an application's traits, this will not be perceived as a different build. In this case, issue a make
veryclean to clean up internal configuration info.

4. EPOS API
EPOS programming API is defined around a set of reusable components that are modeled and
implemented following the ADESD methodology. Whenever possible, components implement
constructs that are well-established in the OS community, so you can usually refer to the classic
systems literature to understand EPOS components. Software components, also called abstractions,
are platform-independent and are encapsulated as C++ classes. Platform-specific elements are
encapsulated as Hardware Mediators, which are functionally equivalent to device drivers in Unix,
but do not build a traditional HAL. Instead, they sustain the interface contract between abstractions
and hardware components by means of static metaprogramming techniques. Mediators get dissolved
or embedded into abstractions at compile-time. EPOS also offers common data structures, such as
lists, vectors, and hash tables, through a set of utility classes.

4.1. Memory Management
Most embedded applications won't require programmers to directly manage memory. When EPOS is
in LIBRARY mode, which implies disabling multitasking support (multithreading and multicore are
still allowed), it automatically arranges for an address space for the (single) application with code
and data segments. The data segment is adjusted to incorporate all the memory available in the
system and a heap is created to export that memory to programmers. In this way, programmers can
simply allocate and release memory using the corresponding C++ operators.

Nonetheless, EPOS provides a comprehensive set of memory abstractions, including Address
Spaces (for multitasking environments, in which each Task has its own address space), adjustable
memory Segments, DMA Buffers, and support to dedicated memory devices, such as Scratchpad
and Flash.

4.1.1. Dynamic Memory (Heap)
Dynamic memory allocation is supported in EPOS through the ordinary C++ operators new and

DBP}; // Default traits static const bool enabled = true; static const bool debugged = true; static
const bool monitored = false; static const bool hysterically_debugged = false; typedef LIST<>
DEVICES; typedef TLIST<> ASPECTS; };



template<> struct Traits<Build>: public Traits<void> { static const unsigned int MODE =
LIBRARY; static const unsigned int ARCHITECTURE = ARMv7; static const unsigned int
MACHINE = Cortex; static const unsigned int MODEL = eMote3; static const unsigned int CPUS
= 1; static const unsigned int NODES = 1; // (> 1 => NETWORKING) static const unsigned int
EXPECTED_SIMULATION_TIME = 0; // s (0 => not simulated) };

https://epos.lisha.ufsc.br/dl2

https://epos.lisha.ufsc.br/ 14/01/2026 10

delete. The default algorithm implemented by EPOS is the Buddy Allocator. Some examples of
memory allocation and release in EPOS are depicted bellow. All valid C++ heap operations are also
valid EPOS memory allocation operations.

Examples

As mentioned before, the Heap in non-multitasking configurations contains all the memory available
to applications in the machine. For multitasking or explicit multiheap configurations, the default size
of a Heap is defined by a machine trait: Traits<Application>::HEAP_SIZE.

Note: Most application traits reuse architecture and machine traits simply by including default
values from system files, so the trait mentioned here might be a forward to another trait, in this case
Traits<Machine>::HEAP_SIZE in include/machine/MACHINE_NAME/MODEL_NAME_traits.h.

Note: Differently from UNIX, EPOS does not automatically extend the Heap in multitasking
configurations when it is depleted. This an unusual situation in an embedded system. However,
programmers can explicitly resize the data segment and feed the Heap with additional memory by
invoking Heap::free().

4.1.2. Stacks
Each Thread in EPOS has its own stack, which is allocated from the Heap during instantiation. The
default size for such stacks is carefully defined for each combination of architecture and machine
through the Traits<Application>::STACK_SIZE trait. A Thread can also have the size of its Stack
defined at creation time.

Note: Most application traits reuse architecture and machine traits simply by including default
values from system files, so the trait mentioned here might be a forward to another trait, in this case
Traits<Machine>::STACK_SIZE in include/machine/MACHINE_NAME/MODEL_NAME_traits.h.
The figure below shows an example that exposes the relationship mentioned above.

4.1.3. Memory Segments
Memory segments are chunks of allocated memory ready to be used by applications. In order to be
actually used by applications, a Segment must be attached to an Address Space. Per-se, it is only an
allocation unit.

This abstraction is of little use for single-task configurations using the LIBRARY mode, since all the
memory available in the machine is injected into the Heap at initialization time. However, for other
configurations, or for Segments designating I/O regions, it delivers a high-level interface for both
main memory and I/O devices. A Segment can be mapped to any (large enough) slot in an Address
Space. It can also be dynamically grown or shrank. Resize operations, however, will fail if the
Segment is created with the CT flag (contiguous) and there are no adjacent slots to fulfill the
request.

Header
include/memory.h



Thread * thread = new Thread(&function); Mutex * mutex = new Mutex; int ** matrix = new
int*[ROWS]; for(int i = 0; i < ROWS; ++i) matrix[i] = new int[COLUMNS]; for(int i = 0; i <
ROWS; ++i) delete [] matrix[i]; delete [] matrix; delete mutex; delete thread;

https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Segments
https://epos.lisha.ufsc.br/EPOS+2+Developer+Guide#Thread

https://epos.lisha.ufsc.br/ 14/01/2026 11

Interface

Methods

Segment(unsigned int bytes, Flags flags = Flags::APP)
Creates a memory segment of bytes bytes. Meaningful flags are:

RW: read-write (read-only if absent)
CWT: cache write-through (write-back if absent)
CD: cache disable (cached if absent)
CT: contiguous (scattered if absent)
APP: application default flags (to be always ORed)

Note: this method can cause the fatal error Out of Memory in case the allocation goes beyond
the system's capability.

Segment(Phy_Addr phy_addr, unsigned int bytes, Flags flags)
Encapsulates a memory region of bytes bytes starting at phy_addr as a Segment that can be
attached to an Address Space. This constructor does not allocate memory. It simply maps a
preexisting memory region as a Segment. In addition to the flags described above, this
constructor can take:

IO: memory-mapped I/O (main memory if absent)

~Segment()
Destroys a segment, releasing the associated memory (unless the segment was created with IO,
case in which only the corresponding page tables are released).

unsigned int size() const
Returns the current size of a Segment.

Phy_Addr phy_address() const
Returns the physical address of the contiguous Segment (i.e. a Segment created with CT).
Requesting the physical address of a scattered segment is invalid and returns
Phy_Addr(false).

int resize(int amount)
Grows or shrinks a Segment by amount bytes. A contiguous Segment (i.e. a Segment created
with CT) can only be expanded using adjacent memory blocks.

Note: this method can cause the fatal error Out of Memory in case the allocation goes beyond
the system's capability.

Examples



class Segment { public: typedef MMU::Flags Flags; typedef CPU::Phy_Addr Phy_Addr; public:
Segment(unsigned int bytes, Flags flags = Flags::APP); Segment(Phy_Addr phy_addr, unsigned
int bytes, Flags flags); ~Segment(); unsigned int size() const; Phy_Addr phy_address() const; int
resize(int amount); };



// With MULTITASKING ENABLED // Creates a Segment of 400K (that can be shared with other

https://epos.lisha.ufsc.br/ 14/01/2026 12

4.1.4. Address Spaces
An Address Space abstracts the range of CPU addresses valid for a given Process. Segments must be
attached to an Address Space in order to be accessed. Each Task has its own Address Space.

For single-task configurations using the LIBRARY mode, a virtual Task is created during system
initialization. Explicitly accessing this Address Space is rather unconventional, but it can be
accessed like this:

Address_Space * as = new Address_Space(MMU::current());
For multitasking configuration, the current Address Space can be obtained with:

Address_Space * as = Task::self()->address_space();
Header
include/memory.h

Interface

Methods

Address_Space()
Creates an Address Space, usually for a new Task.

Address_Space(MMU::Page_Directory * pd)
Returns a reference to an Address Space using pd as the primary page table.

~Address_Space()
Destroys an Address Space

~MMU::Page_Directory * pd()
Returns the current primary page table (called page directory by Intel).

Log_Addr attach(Segment * seg)
Attaches the Segment designated by seg at the first available address. If the target Address
Space does not feature any slot large enough to contain the Segment, then Log_Addr(false) is
returned.

Log_Addr attach(Segment * seg, const Log_Addr & addr)
Attaches the Segment designated by seg at address addr. If the target address is already

processes): Segment shared * = new Segment(400*1024);
Task::self()->address_space()->attach(shared); // Resizes the Data Segment by 1M:
Task::self()->data_segment()->resize(1024*1024); // Independently of MULTITASKING being
enabled or not // Maps a PCI device's memory region so I can also be accessed from de CPU
PCI::Locator loc = PCI::scan(VENDOR_ID, DEVICE_ID, UNIT); PCI::Header hdr; PCI::header(loc,
&hdr); Segment * io_mem; if(hdr) io_mem = new Segment(hdr.region[MEM].phy_addr,
hdr.region[MEM].size, Flags::CD); else io_mem = 0; // Creates a 16 K Segment that can be shared
with and I/O device for DMA operations Segment * dma_mem = new Segment(16*1024,
Flags::CT); Phy_Addr dma_addr = dma_mem->phy_address();



class Address_Space { public: Address_Space(); Address_Space(MMU::Page_Directory * pd);
~Address_Space(); using MMU::Directory::pd; Log_Addr attach(Segment * seg); Log_Addr
attach(Segment * seg, const Log_Addr & addr); void detach(Segment * seg); void detach(Segment
* seg, const Log_Addr & addr); Phy_Addr physical(const Log_Addr & address); };

https://epos.lisha.ufsc.br/ 14/01/2026 13

mapped, the Log_Addr(false) is returned.

void detach(Segment * seg)
Detaches the Segment designated by seg from the Address Space. Detaching a Segment that
has not been previously attached might be a harmful operation in some architectures.

void detach(Segment * seg, const Log_Addr & addr)
Detaches the Segment designated by seg from addr at the Address Space. Detaching a
Segment that has not been previously attached or detaching it from a different address might be
a harmful operation in some architectures.

Phy_Addr physical(const Log_Addr & addr)
Returns the physical address currently bound to addr in the Address Space.

Examples

4.2. Process Management
In EPOS, process management is accomplished by three components: Task, Thread, and
Scheduler. They were designed and implemented to match the corresponding concepts described in
the classic systems literature. The isolation of scheduling policies from the implementation of
processes defines an elegant framework for future developments. This design is discussed in depth
in this paper.

4.2.1. Task
If a process is a program in execution, then a Task is the static portion of that process,
encompassing its code and data segments, while a Thread abstracts its dynamic aspects, featuring a
private context and stack. A Thread is thus said to run on a Task. Each Task has its own Address
Space. Segments can be attached to any Address Space and thus can be shared among Tasks.
Threads are handled independently of belonging to the same Task or to different ones.

Note: for single-task configurations using the LIBRARY mode, a virtual Task is created during
system initialization. Explicitly accessing this Task is rather unconventional, but it can be done using
the Task::self() method.

Header
include/process.h

Interface



// Creates a Segment of 400K and attaches it to the Address Space: Segment shared * = new
Segment(400*1024); // With MULTITASKING ENABLED
Task::self()->address_space()->attach(shared); // With MULTITASKING DISABLED
Address_Space(MMU::current()).attach(shared);



class Task { template<typename ... Tn> Task(Segment * cs, Segment * ds, int (* entry)(Tn ...), Tn
... an); template<typename ... Tn> Task(const Thread::Configuration & conf, Segment * cs,
Segment * ds, int (* entry)(Tn ...), Tn ... an); ~Task(); Address_Space * address_space(); Segment
* code_segment(); Segment * data_segment(); Log_Addr code(); Log_Addr data(); Thread * main();
static Task * volatile self(); }

http://link.springer.com/article/10.1007%2Fs11241-013-9183-3

https://epos.lisha.ufsc.br/ 14/01/2026 14

Methods

template<typename ... Tn>
Task(Segment * cs, Segment * ds, int (* entry)(Tn ...), Tn ... an)
Creates a Process by implicitly creating a Task and a Thread. The Task is created with the code
Segment given by cs and the data Segment given by ds. Thread is created to run the function
given by entry on the associated Task. The C++ parameter pack is consistently passed to the
Thread following the architecture's call convention (stack, register set, window, etc).

Note: the code Segment is mapped to the new Task's Address Space in accordance with the
memory model in place (defined in the application's Traits), so it is usually possible to assume
entry is a valid address within the code Segment. Nevertheless, this is an assumption for the
method and programmers are to ensure it for any exotic scenario.

template<typename ... Tn>
Task(const Thread::Configuration & conf, Segment * cs, Segment * ds, int (*
entry)(Tn ...), Tn ... an)
This constructor is similar the the previous, but takes an addition Configuration pack (see
Thread for details).

~Task()
Destroys a Task and consequently deletes (i.e. kills) all its Threads.

Address_Space * address_space()
Returns the Task's Address Space.

Segment * code_segment()
Returns the Task's code Segment.

Segment * data_segment()
Returns the Task's data Segment.

Log_Addr code()
Returns the address the Task's code Segment is mapped to in its Address Space.

Log_Addr data()
Returns the address the Task's data Segment is mapped to in its Address Space.

Thread * main()
Returns the address of the function used to create the Task's first Thread (usually the function
main()).

static Task * volatile self()
Returns a reference to the running Task.

Examples



// Create a new Task and its initial Thread from an ELF object ELF * elf = ... ; Address_Space * as
= Task::self()->address_space(); // Create and load the CODE segment Segment * cs = new
Segment(elf->segment_size(0)); CPU::Log_Addr code = as->attach(cs); if(elf->load_segment(0,
code) < 0) { cerr << "Application code segment is corrupted!" << endl; return; } as->detach(cs);
// Create and load the DATA segment with room for a Heap Segment * ds = new

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Thread

https://epos.lisha.ufsc.br/ 14/01/2026 15

4.2.2. Thread
If a process is a program in execution, then a Thread encompasses its dynamic aspects. A Thread
has a private context and a private stack. It runs a Task's code and manipulates its data.

Header
include/process.h

Interface

Types

State
Defines the states a Thread can assume.

RUNNING: the Thread is running on a CPU.
READY: the Thread is ready to be executed, but there are no available CPUs at the moment.
SUSPENDED: the Thread is suspended and therefore it is not eligible to be scheduled.
WAITING: the Thread is blocked waiting for a resource (e.g. Semaphore, Communicator,
File).
FINISHING: the Thread called exit and its state is being held for an eventual join().

Priority
Defines an integer representation for the priorities that a Thread can assume.

Criterion
Defines the priorities a Thread can assume. It is usually an import of a type defined in the
Scheduling_Criteria namespace. It is used by EPOS as the ordering criterion for all
scheduling decisions. Many priorities can have symbolic representations. The following are the
most typical ones:

HIGH: the highest priority a user-level Thread can have.
LOW: the lowest priority a user-level Thread can have.
NORMAL: the priority assigned to Threads by default.
MAIN: the priority assigned to the first Thread of a Task (usually running the main()
function). It is often an alias for NORMAL.
IDLE: the Idle Thread priority (usually LOW - 1).

Configuration

Segment(elf->segment_size(1) + S::Traits<Application>::HEAP_SIZE); CPU::Log_Addr data =
as->attach(ds); if(elf->load_segment(1, data) < 0) { cerr << "Application data segment is
corrupted!" << endl; return; } as->detach(ds); // Create the Task int (* entry)() =
CPU::Log_Addr(elf->entry()); Task * task = new Task(cs, ds, entry); // Wait for it to finish
task->main()->join();



class Thread { public: enum State { RUNNING, READY, SUSPENDED, WAITING, FINISHING };
typedef Scheduling_Criteria::Priority Priority; typedef Traits<Thread>::Criterion Criterion; enum
{ HIGH = Criterion::HIGH, NORMAL = Criterion::NORMAL, LOW = Criterion::LOW, MAIN =
Criterion::MAIN, IDLE = Criterion::IDLE }; struct Configuration { State state; Criterion criterion;
Task * task; unsigned int stack_size; }; template<typename ... Tn> Thread(int (* entry)(Tn ...), Tn
... an); template<typename ... Tn> Thread(const Configuration & conf, int (* entry)(Tn ...), Tn ...
an); ~Thread(); const volatile State & state(); const volatile Priority & priority(); void
priority(const Priority & p); Task * task(); int join(); void pass(); void suspend(); void resume();
static Thread * volatile self(); static void yield(); static void exit(int status = 0); }

https://epos.lisha.ufsc.br/ 14/01/2026 16

This type is used to define a configuration pack for Threads. The following parameters can be
adjusted:

state: designates the Thread's initial state. READY is the default. SUSPENDED can be used to
prevent scheduling after creation. A Thread created as SUSPENDED must be explicitly
activated with resume().
criterion: designates the Thread's initial priority. NORMAL is the default. Any value
between LOW and MAX, or any Criterion mapping to that interval is valid.
task: can be (rarely) used to create a Thread over another Task. Default is to create a
Thread on the currently running Task.
stack_size: designates the size in bytes of Thread's Stack. The default is
Traits<Application>::STACK_SIZE.

Methods

template<typename ... Tn>
Thread(int (* entry)(Tn ...), Tn ... an)
Creates a Thread on the running Task to run the function given by entry. The C++ parameter
pack is consistently passed to the Thread following the architecture's call convention (stack,
register set, window, etc).

template<typename ... Tn>
Thread(const Configuration & conf, int (* entry)(Tn ...), Tn ... an)
Creates a Thread on the running Task to run the function given by entry. The Thread's creation
is controlled by conf (see the Configuration type declaration above). The remainder of the
C++ parameter pack is consistently passed to the Thread following the architecture's call
convention (stack, register set, window, etc).

~Thread()
Destroys a Thread (respecting the corresponding C++ object's semantics; e.g. the destructor
does not delete the object).

const volatile State & state()
Returns the Thread's current state.

const volatile Priority & priority()
Returns the Thread's current priority (i.e. an integer representing the ordering imposed by the
Criterion in place).

void priority(const Priority & p)
Adjusts the Thread's priority according to the Criterion in place.

Task * task()
Returns the Task this Thread is running on.

int join()
Waits for this Thread to finish and returns the value passed over at return (or exit()).

Note: the int return type is defined by the C++ standard as the only one valid for the main()
function and therefore requires EPOS to follow it. POSIX further limits the interpretation of that
integer to 8 bits. EPOS would prefer to abolish it if there were a void main() valid signature.
Programmers can define their own semantics for the integer in EPOS.

https://epos.lisha.ufsc.br/ 14/01/2026 17

void pass()
Hands the CPU over to this Thread. This function can be used to implement user-level
schedulers. A Thread can be created with a higher priority to act as the scheduler. EPOS
scheduler will always elect it, but it can in turn pass() the CPU to another Thread. Accounting
is done for the Thread receiving the CPU, but timed scheduling criteria are not reset. In this
way, the calling Thread is charged only for the time it took to hand the CPU over to another
Thread, which inherits the CPU without further intervention from EPOS' scheduler.

void suspend()
Suspends the execution of this Thread. The Thread's state is set to SUSPENDED and it will not be
eligible for scheduling until resume() is called. If called for the running Thread, this method
triggers a rescheduling.

void resume()
Resumes the execution of this Thread by setting its state to READY and notifying the Scheduler.
Whether or not this notification will trigger a reschedule is Criterion dependent. Resuming a
Thread that is not suspended is an invalid operation, even if for most policies this would have no
effects.

static Thread * volatile self()
Returns a reference to the running Thread (actually, a volatile reference to a pointer
designating it).

static void yield()
Yields the CPU by triggering a reschedule operation the excludes the running Thread from the
election. If the scheduler can find another Thread to take over the CPU, then the calling
Thread's state is set to READY and that Thread is put to run. Since the Thread yielding the CPU
is in READY state it can be rescheduled at any subsequent time.

static void exit(int status = 0)
Causes the termination of the calling Thread, which has its state set to FINISHING. The Thread's
context is preserved for an eventual join() operation (until the corresponding C++ object is
deleted). If there is already a pending join() at the time exit() is called, then the waiting
Thread is reactivated (i.e. its state is set to READY and the scheduler is notified). This method
always triggers a reschedule.

Examples

4.2.3. RT_Thread
The Real-time Thread abstraction is an specialization of Thread designed to handle a variety of
scenarios in the realm or Periodic Real-time Scheduling.

Header
include/real-time.h

Interface



Complete me!



https://epos.lisha.ufsc.br/ 14/01/2026 18

Methods

RT_Thread(void (* function)(), const Microsecond & deadline, const Microsecond &
period = SAME, const Microsecond & capacity = UNKNOWN, const Microsecond &
activation = NOW, int times = INFINITE, int cpu = ANY, unsigned int stack_size =
STACK_SIZE)
Creates a Periodic Thread on the running Task to run the function given by function. These are
the constructor's parameters:

deadline: the Periodic Thread's deadline in µs.
period: the Periodic Thread's period in µs (a new job is released at every period µs). SAME
makes it equal to the Thread's deadline.
capacity: designates the time each job takes to finish. This is only meaningful for a few
real-time algorithms (i.e. Scheduling Criteria) and is usually given as a Worst-Case
Execution Time estimate for the Thread's jobs. Leave it as UNKNOWN for Criteria that do not
use it.
activation: a time to wait before releasing the Thread's first job (i.e. before activating it).
times: periodic threads usually run forever and have this parameter passed as INFINITE.
You can restrict the number of job releases with this parameter.
cpu: some multicore Scheduling Criteria allows programmers to specify the first CPU the
Thread will run on. Some of them, the partitioned ones, will even restrict the execution of
subsequent Thread's jobs to that CPU.
stack_size: designates the size in bytes of Thread's Stack. The default is
Traits<Application>::STACK_SIZE.

Examples

4.2.4. Scheduler
EPOS provides a family of schedulers that covers a large variety of scenarios, from ordinary time-
sharing algorithms to sophisticated real-time, energy-aware multicore ones. EPOS Scheduler can be
instantiated multiple times to schedule different classes of resources, such as disks and networks,
but each resource class has a single scheduler. In order to select the Thread Scheduler (or CPU
Scheduler, depending on your perspective) simply pick one of them from the Scheduling_Criteria
namespace and edit your application's Traits file to designate it as Traits<Thread>::Criterion.

There are four basic Traits for a Thread Scheduling Criterion: preemptive, timed, dynamic, and
energy-aware:

Preemptive: a Preemptive Criterion requires a reevaluation, and eventually a rescheduling,
whenever a Thread enters the READY state, independently of the previous state (e.g. a newly
created Thread, a Thread released from a Mutex, a Thread that was waiting fro I/O). A non-
preemptive Criterion will only be reevaluated when the RUNNING Thread explicitly causes it state
to change (e.g. by blocking on a Synchronizer or by invoking I/O operations). All timed Criteria

class RT_Thread { public: enum { SAME = Scheduling_Criteria::RT_Common::SAME, NOW =
Scheduling_Criteria::RT_Common::NOW, UNKNOWN =
Scheduling_Criteria::RT_Common::UNKNOWN, ANY = Scheduling_Criteria::RT_Common::ANY };
public: RT_Thread(void (* function)(), const Microsecond & deadline, const Microsecond & period
= SAME, const Microsecond & capacity = UNKNOWN, const Microsecond & activation = NOW,
int times = INFINITE, int cpu = ANY, unsigned int stack_size = STACK_SIZE); }



Complete me!

https://epos.lisha.ufsc.br/ 14/01/2026 19

are preemptive. Most priority-based Criteria are also preemptive. Shortest Job First is a non-
Preemptive Criterion.
Timed: a Timed Criterion requires a QUANTUM to be specified (in µs). This constant defines the
maximum time a Thread can run before the Scheduler rechecks the Criterion in place
(eventually scheduling another Thread). The value of Traits<Thread>::QUANTUM must be
carefully chosen: a value of a few µs will cause the system to reevaluate the Criterion too often
and will result in (very) large overhead, eventually bringing the system to thrash; a value of
hundreds of ms will enable CPU-bound threads to monopolize the CPU, eventually degrading the
system responsiveness. Values between 100 µs and 100 ms are common. All timed Criteria are
preemptive. Round-robin is a Timed Criterion.
Dynamic: a Dynamic Criterion is recalculated at run-time to constantly reflect the police in
force. There are two moments at which a Dynamic Criterion can be recalculated: at dispatch
and at release. For Aperiodic Threads, for which no period is defined, it is done when the
Thread leaves the CPU (i.e. another Thread is dispatched). For Periodic Threads, recalculating
at dispatch would not be adequate, since jobs of other Threads will still be released before the
next activation and they may influence on the calculations. Therefore, Periodic Threads
subjected to Dynamic Criteria are reevaluated before the release of each job. Earliest Deadline
First is Dynamic Criterion.
Energy-aware: Criteria with this trait will cause low priority Threads to be suspended whenever
their execution could cause a critical Thread to fail due to the lack of power. In order to enforce
such a regimen, Energy-aware Criteria require Traits<System>::LIFE_SPAN to be defined. An
energy monitoring mechanism is also enabled in the platforms supporting it.

The following are EPOS standard Scheduling Criteria. Many others exist and implementing yours is
not difficult.

FCFS: First-come, First Served (FIFO)
Priority (Static and Dynamic)
RR: Round-Robin
GRR: Multicore Round-Robin
CPU Affinity (multicore)
[G|P|C]RM: Rate Monotonic (single-core and global, partitioned or clustered multicore)
[G|P|C]DM: Deadline Monotonic (single-core and global, partitioned or clustered multicore)
[G|P|C]EDF: Earliest Deadline First (single-core and global, partitioned or clustered multicore)
[G|P|C]LLF: Least Laxity First (single-core and global, partitioned or clustered multicore)

4.3. Process Coordination (Synchronizers)
Process coordination in EPOS is realized by the Synchronizer and the Communicator families of
abstractions. The former is described here and the latter in the next section.

Synchronizers are used to coordinate process execution so concurrent (or parallel) Threads can
share resources without corrupting them. avoid race conditions during the execution of parallel
programs. A race condition occurs when a thread accesses a piece of data that is being modified by
another thread, obtaining an intermediate value and potentially corrupting that piece of data.

4.3.1. Semaphore
The Semaphore member of the Synchronizer family realizes a semaphore variable as invented by
Dijkstra. A semaphore variable is an integer variable whose value can only be manipulated indirectly
through the atomic operations p() and -=v()+-.

http://en.wikipedia.org/wiki/Semaphore_(programming)

https://epos.lisha.ufsc.br/ 14/01/2026 20

Note: besides being useful to synchronize critical sections, Semaphores can be also used as atomic
resource counters as in the Producer-consumer problem.

Header
include/synchronizer.h

Interface

Methods

Semaphore(v : int = 1)
Creates a Semaphore, which, by default, is initialized with 1.

~Semaphore()
Destroys a Semaphore, releasing eventual blocked Threads.

p()
Atomically decrements the value of a semaphore. Invoking p() on a semaphore whose value is
less than or equal to zero causes the Thread to wait until the value becomes positive again.

v()
Atomically increments the value of a Semaphore, eventually unblocking a waiting Thread if the
value becomes positive (i.e. making its state READY and notifying the Scheduler).

Examples

4.3.2. Mutex
The Mutex member of the Synchronizer family implements a Binary Semaphore.

Header
include/synchronizer.h

Interface

Methods

Mutex()
Creates a Mutex.

~Mutex()
Destroys a Mutex, releasing eventual blocked Threads.

lock()
Locks a Mutex. Subsequent invocations cause the calling Threads to block.



class Semaphore { public: Semaphore(int v = 1); ~Semaphore(); void p(); void v(); }



Complete me!



class Mutex { public: Mutex(); ~Mutex(); void lock(); void unlock(); }

https://en.wikipedia.org/wiki/Producer%E2%80%93consumer_problem
https://en.wikipedia.org/wiki/Semaphore_(programming)#Semaphores_vs._mutexes

https://epos.lisha.ufsc.br/ 14/01/2026 21

unlock()
Unlocks a Mutex. When a Thread invokes unlock() on a Mutex for which there are blocked
Threads, the first Thread put to wait is unblocked (by making its state READY and notifying the
Scheduler) and the Mutex is immediately locked (atomically). If no threads are waiting, the
unlock operation has no effect.

Examples

4.3.3. Condition
The Condition member of the Synchronizer family realizes a system abstraction inspired on the
condition variable language concept, which allows a Thread to wait for a predicate on shared data to
become true. It is often used by programming languages to implement Monitors.

Header
include/synchronizer.h

Interface

Methods

Condition()
Creates a condition variable.

~Condition()
Destroys a condition variable, releasing eventual blocked Threads.

wait()
Implicitly unlocks the shared data and puts the calling Thread to wait for the assertion of a
predicate. Several threads can be waiting on the same condition. The assertion of a predicate
can be announced either to the first blocked Thread or to all blocked Threads. When a thread
returns from the wait operation, it implicitly regains control over the critical section.

signal()
Announces the assertion of a predicate to the first waiting Thread, releasing it for execution (i.e.
making its state READY and notifying the Scheduler).

broadcast()
Announces the assertion of a predicate to all waiting Threads, making their state READY and
notifying the Scheduler.

Examples

4.4. Timing
Time management in EPOS encompasses abstractions to measure time intervals, to keep track of the



Complete me!



class Condition { public: Condition(); ~Condition(); void wait(); void signal(); void broadcast(); }



http://en.wikipedia.org/wiki/Condition_variable#Blocking_condition_variables
https://en.wikipedia.org/wiki/Monitor

https://epos.lisha.ufsc.br/ 14/01/2026 22

current time, and also to trigger timed events.

4.4.1. Clock
Clock abstracts a Real-time Clock (RTC) in platforms that feature one. It can be used to get and set
the current time and date.

Header
include/time.h

Interface

Types

Microsecond
An unsigned integer representing µs. Its resolution is adjusted according to
Traits<System>::LIFE_SPAN either to 32 or 64 bits.

Second
An unsigned integer representing seconds. Its resolution is adjusted according to
Traits<System>::LIFE_SPAN either to 32 or 64 bits.

Date
Data structure to store the components of a date: year, month, day, hour, minute, and second;
as unsigned integers. It features methods to convert this representation of data to and from an
offset in seconds from a given epoch

Methods

Clock()
Constructs a Clock.

~Clock()
Destroys a Clock.

Microsecond resolution()
Returns the Clock resolution in µs.

Second now()
Returns the current time in seconds.

Date date()
Returns the current date.

void date(Date & d)
Sets the current date.



class Clock { public: class Date { public: Date() {} Date(unsigned int Y, unsigned int M, unsigned
int D, unsigned int h, unsigned int m, unsigned int s); Date(const Second & seconds, unsigned
long epoch_days = 0); operator Second(); Second to_offset(unsigned long epoch_days = 0);
unsigned int year(); unsigned int month(); unsigned int day(); unsigned int hour(); unsigned int
minute(); unsigned int second(); void adjust_year(int y); } public: Clock(); ~Clock(); Microsecond
resolution(); Second now(); Date date(); void date(const Date & d); }

https://epos.lisha.ufsc.br/ 14/01/2026 23

Examples

4.4.2. Chronometer
Chronometer abstracts a timepiece able to measure time intervals. Its precision and resolution
depend on the timing devices available in the platform (e.g. real-time clocks, CPU clock counters,
high-performance timers).

Header
include/time.h

Interface

Methods

Chronometer()
Constructs a Chronometer.

~Chronometer()
Destroys a Chronometer.

Hertz frequency()
Returns the Chronometer frequency in Hertz.

void reset()
Resets the Chronometer.

void start()
Starts counting time. It can be used only once for each counting procedure. Subsequent
invocations are ignored (use reset() before using start() again).

void lap()
Takes a snapshot of the current time counting. A read() will return the interval accumulated
for all laps since start(). Time counting continues normally.

void stop()
Stops counting time. A read() will return the interval elapsed since start().

Microsecond read()
Return the measured time in µs. Before start() the method returns 0. After start() it returns
the time measured between start() and the last lap() or stop().

Examples



Complete me!



class Chronometer { public: Chronometer(); ~Chronometer(); Hertz frequency(); void reset();
void start(); void lap(); void stop(); Microsecond read(); }



Complete me!

https://epos.lisha.ufsc.br/ 14/01/2026 24

4.4.3. Alarm
Alarm abstracts timed events in EPOS. An Alarm uses a hardware timer to trigger high-level timed
events. These events are abstracted by the Handler utility, which declares an interface for
polymorphic objects that implement the call operator void operator()()- (see Handler. An event
Handler can be a function or any other object implementing its interface. For example, a Thread
Handler holds a reference to a Thread and binds the call operator to resume(). A Semaphore
Handler holds a reference to a Semaphore and binds the call operator to v(). In this case, the
Handler itself is Thread synchronized on that Semaphore.

Note: A Sempahore Handler is particularly interesting for it has memory: if an event cannot be
handled in time, it will be stored handled lately (as soon as the first occurrence gets handled and the
scheduler allows). Other Handlers might lose late events.

Header
include/time.h

Interface

Methods

Alarm(const Microsecond & time, Handler *handler, int times = 1)
Creates an Alarm to trigger handler after time µs. The event will occur times times or forever
if INFINITE is given. Handler must be polymorphic and it must implement the call operator (-
+void operator()()+--) for the trigger. See the Handler utility for details.

~Alarm()
Destroys an Alarm;

Hertz frequency()
Returns the Alarm's frequency in Hertz.

void delay(const Microsecond & time)
Delays a Thread execution by time µs.

Examples

4.4.4. Delay
Delay is used to delay the execution of Threads by a given, usually small, amount of time.

Header
include/time.h

Interface



class Alarm { public: Alarm(const Microsecond & time, Handler * handler, int times = 1);
~Alarm(); static Hertz frequency(); static void delay(const Microsecond & time); }



Complete me!



https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Handler
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Handler

https://epos.lisha.ufsc.br/ 14/01/2026 25

Methods

Delay(const Microsecond & time)
Creates a Delay object to delay the execution of the calling Thread by time µs. The object is
implicitly destroyed afterward and there are no methods to act on it meanwhile.

Examples

4.5. Communication
Communication in EPOS is delegated to the families of abstractions shown in the Figure below.
Application processes communicate with each other using a Communicator, which acts as an end-
point to a communication Channel implemented on a Network interfaced by a Network Interface
Card (NIC). For example, a TCP connection in EPOS is abstracted as a Communicator for a TCP
Channel over an IP Network. Ethernet would be a good candidate for the NIC in this example.
Several other protocols have been designed for EPOS, most of them avoiding the issues imposed by
TCP/IP on embedded systems, especially critical ones and those for IoT. In order to improve
usability, EPOS exports rather different protocols under this same interface, ranging from simple
serial ports to TCP/IP and TSTP.

An overview of EPOS' communication structure is shown below.

4.5.1. Link
Link is a point-to-point Communicator. Links are used in EPOS to abstract serial communication for
a variety of hardware devices, including serial ports such as UART, USART, SPI, and USB. It is also
used to create virtual connections on packet switching networks.

Header
include/communicator.h

Interface

class Delay { public: Delay(const Microsecond & time); }



Complete me!



https://epos.lisha.ufsc.br/ 14/01/2026 26

Methods

Link(const Local_Address & local, const Address & peer = Address::NULL)
Creates a Link between local and peer. The calling Thread is blocked until a connection with
Peer is established. The local Communicator address is relative to the local host and is given as
a Local_Address, while the Peer's address must be given as fully qualified Address. For some
protocols, it is valid to leave peer undefined (-+Address::NULL+-) thus indicating that the
connection can be established with any Peer. After the connection is established, that address
can be retrieved with peer() (unless the Network itself does not define addresses, such as for a
serial line).

~Link()
Destroys a Link, properly finishing an eventual connection.

int read(void * data, unsigned int size)
Reads size bytes of data from the Link and stores it at data. The calling Thread is blocked until
size bytes are received.

int write(const void * data, unsigned int size)
Writes size bytes of data starting at data into the Link.

const Address & peer()
Returns the Peer's address. Calling the method before a connection has been established
returns Address::NULL.

Examples

4.5.2. Port
Port is a multi-point Communicator for connection-oriented networks. A Thread can listen on a Port
for connection requests from other Threads. Upon connection a Link is returned and both Threads
can exchange data. It is widely used with the Client-Server architecture, with Servers listening on a
Port for Clients' requests.

Header
include/communicator.h

Interface

Methods

Port(const Local_Address & local)

template<typename Protocol> class Link { public: typedef typename Protocol::Address Address;
typedef typename Protocol::Address::Local Local_Address; public: Link(const Local_Address &
local, const Address & peer = Address::NULL); ~Link(); int read(void * data, unsigned int size);
int write(const void * data, unsigned int size); const Address & peer(); }



Complete me!



template<typename Protocol> class Port { public: typedef typename Protocol::Address Address;
typedef typename Protocol::Address::Local Local_Address; public: Port(const Local_Address &
local); ~Port(); Link<Channel> * listen(); Link<Channel> * connect(const Address & to); }

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Link

https://epos.lisha.ufsc.br/ 14/01/2026 27

Creates a Port with address local to listen on for connection requests. Creating a Port on a
previously assigned Address is invalid for most Protocols.

~Port()
Destroys the Port, releasing the local address and closing eventually open connections (i.e.
Links).

Link<Channel> * listen();
Listens for a connection request. The calling Thread is blocked until a connection can be
established. A Link to the Peer Communicator is returned upon connect.

Link<Channel> * connect(const Address & to)
Connects to a Port at address to. The calling Thread is blocked until a connection can be
established. A Link to the peer is returned upon connecting. If a connection cannot be
established, including because there was already a connection to that address and the
underlying Protocol does not support multiple connections, 0 is returned.

Examples

4.5.3. Mailbox
A Mailbox is a multi-point Communicator for connectionless Protocols. A Thread can receive
messages from a Mailbox and it can also send messages through it to any other Mailbox.

Header
include/communicator.h

Interface

Methods

Mailbox(const Local_Address & local)
Creates a Mailbox with address local. The Mailbox can be used both to sent and to receive
messages. Creating a Mailbox on a previously assigned Address is invalid for most Protocols.

~Mailbox()
Destroys the Mailbox, releasing the local address.

int send(const Address & to, const void * data, unsigned int size)
Sends a Message to to containing size bytes of data stored at data. The method returns the
number of bytes effectively sent.

int receive(Address * from, void * data, unsigned int size)
Receives a Message and copies up to size bytes of its data to data. The calling Thread is
blocked until the packet is received. from is updated with the address of the sender. The



Complete me!



template<typename Protocol> class Mailbox { public: typedef typename Protocol::Address
Address; typedef typename Protocol::Address::Local Local_Address; public: Mailbox(const
Local_Address & local); ~Mailbox(); int send(const Address & to, const void * data, unsigned int
size); int receive(Address * from, void * data, unsigned int size); }

https://epos.lisha.ufsc.br/ 14/01/2026 28

number of bytes effectively received (and copied) is returned.

Examples

4.5.4. Channel
Channels in EPOS are used to model communication protocols classified at level four (transport)
according to the OSI model. TCP, UDP, ELP, TSTP are Channels. Implementing a new protocol in
EPOS is easier than in ordinary Unix-like systems, but nevertheless requires programming
knowledge beyond that what could be covered in a User's Guide. Please, refer to our publications for
additional information.

4.5.5. Network
Networks in EPOS are used to model communication protocols classified at level three (network)
according to the OSI model. IP, ELP, and TSTP are Networks. Implementing a new protocol in EPOS
is easier than in ordinary Unix-like systems, but nevertheless requires programming knowledge
beyond that what could be covered in a User's Guide. Please, refer to our publications for additional
information.

4.5.6. IPC
TODO

4.5.7. TSTP
The Trusful Space-Time Protocol (TSTP) is EPOS' response to Wireless Sensor Network in terms
of protocols. It consolidates over a decade of research on the theme in a cross-layer protocol that
features Semantic Data, Authentication, Encryption, Timing, Location, Convergecast Routing, and an
Energy-Efficient MAC. It is best exposed to users through SmartData.

TSTP comprises the whole network stack, from the application layer to the Medium Access Control
(MAC) layer (the current implementation of TSTP MAC assumes an IEEE 802.15.4 2450MHz DSSS
PHY layer). The figure below shows a configuration of EPOS' network stack for TSTP@EPOSMoteIII
with a single NIC.



Complete me!

https://en.wikipedia.org/wiki/OSI_model
http://www.lisha.ufsc.br/pub/index.php?title=EPOS%20Publications&key=EPOS
https://en.wikipedia.org/wiki/OSI_model
http://www.lisha.ufsc.br/pub/index.php?title=EPOS%20Publications&key=EPOS
https://en.wikipedia.org/wiki/Wireless_sensor_network
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData

https://epos.lisha.ufsc.br/ 14/01/2026 29

TSTP is a geographic protocol, and every node in the network is synchronized in space and time,
which means that every node has spatial coordinates and a synchronized clock. A TSTP network
consists of one sink node and any number of sensor nodes. The sink is the reference for clock
synchronization and spatial localization.

The main TSTP subcomponents are Router, Locator, Timekeeper, Security Manager, and MAC.
Each one is responsible for different aspects of TSTP's functionality, and the design of each one can
be intimately connected to another component.

4.5.7.1. Configuration

To enable TSTP, you need to set TSTP as a network for a NIC, as in the example below (see also
Configuring Networking).

TSTP allows for pre-definition of coordinates for static nodes. You can define the coordinates of the
node in src/component/tstp_init.cc, at the Locator::bootstrap() method, by setting the _here
variable: _here = Coordinates(10,10,10);.

To deploy a sink node, set its coordinates to (0,0,0) inside Locator::bootstap();. Any node which
is not at (0,0,0) will act as a sensor node located in the given coordinates.

4.5.7.2. Bootstrap

Before calling your application's main(), TSTP components need to bootstrap. This is done during
TSTP's initialization (TSTP::init() at src/component/tstp_init.cc), by calling the bootstrap()
method of each component. The Locator sets the initial coordinates for the node; the Timekeeper



template<> struct Traits<Network>: public Traits<Build> { typedef LIST<TSTP> NETWORKS;
static const unsigned int RETRIES = 3; static const unsigned int TIMEOUT = 10; // s static const
bool enabled = (Traits<Build>::NODES > 1) && (NETWORKS::Length > 0); };

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking

https://epos.lisha.ufsc.br/ 14/01/2026 30

synchronizes the clock with the network; The Security Manager establishes a shared cryptographic
key with the sink.

Note: the main() method of a sensor node's application will not be executed until bootstrap
is complete. You need a running TSTP sink to be able to run an application on a TSTP
sensor!

4.5.7.3. Interaction between components

The present tightly-coupled cross-layered design does not imply in a monolithic software
implementation. To make component interaction efficient and uncoupled, three strategies are used:
Zero-copy Buffer Management, Metadata Gathering, and Event Propagation.

4.5.7.3.1. Zero-copy Buffer Management

Zero-copy is a mechanism that implements efficient message passing and it consists on transferring
the ownership of pointers to data buffers from one component to another.
As only pointers are transferred, it avoids copying data between components (such as layers of a
layered protocol stack), thus achieving better efficiency.

TSTP uses EPOS' Zero-Copy Buffer utility to share messages between components, NIC, and
application.

4.5.7.3.2. Metadata Gathering

To allow network components to share information that goes beyond the message's header (e.g.
precise time of arrival), we enrich each buffer with metadata, which is visible to every component
but not transmitted through the network. Upon reception of a message, each component must
populate and adjust specific portions of the metadata. Because the order of buffer processing and
which component is responsible for which piece of metadata are well-defined, each component
knows what metadata it can use for its own purposes. For example, the MAC component inserts the
values of RSSI and precise SFD time stamp read from the radio hardware. The buffer (holding the
message and the metadata) is passed to the Locator, which uses the RSSI to update its position
estimation. The buffer is then passed to the Timekeeper, which potentially uses the SFD time stamp
to synchronize the node's clock with the sender of that message. This way, the Timekeeper and
Locator implementations are hardware-independent (reading the radio's registers is the role of the
MAC), and indeed independent on the implementation of any other component, as long as the
necessary metadata is populated in each network buffer at the right time.

The metadata available at TSTP buffers is defined in include/nic.h:



// Buffer Metadata added to frames by higher-level protocols struct Metadata { int rssi; //
Received Signal Strength Indicator unsigned long long sfd_time_stamp; // Start-of-frame
reception time stamp unsigned int id; // Message identifier unsigned long long offset; // MAC
contention offset bool destined_to_me; // Whether this node is the final destination for this
message bool downlink; // Message direction (downlink == from sink to sensor) unsigned long
long deadline; // Time until when this message must arrive at the final destination unsigned int
my_distance; // This node's distance to the message's final destination unsigned int
sender_distance; // Last hop's distance to the message's final destination bool is_new; // Whether
this message was just created by this node bool is_microframe; // Whether this message is a
Microframe bool relevant; // Whether any component is interested in this message bool trusted; //
If true, this message was successfully verified by the Security Manager bool freed; // If true, the

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Buffer_Zero-Copy_

https://epos.lisha.ufsc.br/ 14/01/2026 31

4.5.7.3.3. Event Propagation

Buffers are propagated to components using the publisher/subscriber design pattern, in which the
upper layers are observers (subscribers) of the lower layers (publishers).
Components observe the NIC by calling the attach() method. When a message is received by the
NIC, it notifies any observers attached to it in the order they were attached, by calling the respective
-+update()-+ method, passing a reference to the buffer containing the message (including all the
headers) and metadata. The last component to be notified is the one responsible for the API, which
delivers the message to the application (usually a SmartData object) if necessary.

4.5.7.4. Coordinates

On TSTP, the coordinate is relative to the Sink. The sink node is capable to convert this coordinate
to another coordinate system. For example, if you want to convert the coordinate to the system
relative to Earth's mass center (ECEF), you need to convert the Sink's position from traditional
coordinate system to ECEF. We recommend you to follow this steps:

1. Access this site. Put a reference name of your location and adjust the position of the marker. Copy
the lat/lng/alt of the Sink's location for the next step.

2. Now, you need access this site. Paste the lat/lng/alt in the respective fields. Click on the button
"LLH to ECEF". Done, you will get the position relative to the Earth's mass center. Note that for
being used with the TSTP you must convert from km to cm.

4.5.8. TCP/IP
TCP/IP is the standard stack of protocols for communication on the Internet. EPOS implements the
protocol stack as specified in the RFCs. Some embedded optimizations described elsewhere are not
included in OpenEPOS and therefore this version is fully interoperable with other systems.

4.5.8.1. ARP

The Address Resolution Protocol (ARP) is implemented in EPOS following RFC 826 for Ethernet and
likewise for other network technologies. It is implicitly enabled for each NIC for which IP is enabled
and there is no user-visible configuration.

4.5.8.2. DHCP

The Dynamic Host Configuration Protocol (DHCP) is implemented in EPOS following RFC 2131.
Since it depends on UDP, IP must be initialized first for any NIC using DHCP. See Configuring
Networking for details.

4.5.8.3. IP

The Internet Protocol version 4 (IPv4) is implemented in EPOS following RFC 791. An IP
Communicator is not defined in EPOS, so applications should not directly use it. For testing and new
protocol development, direct IP access can be gained through ICMP. In order to enable IP for a
given NIC, list it as the chosen protocol in the applicaiton's Traits. See Configuring Networking for
details.

4.5.8.4. ICMP

The Internet Control Message Protocol (ICMP) is implemented in EPOS following RFC 792. An ICMP
Communicator is defined in EPOS as Mailbox<ICMP>. See Mailbox above for the general interface.
Messages for this Mailbox are ICMP packets specified in the RFC and described bellow.

MAC will not free this buffer unsigned int attempts; // Number times the MAC tried to transmit
this buffer unsigned int microframe_count; // Number of Microframes left until data };

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
http://www.mapcoordinates.net/en
https://www.oc.nps.edu/oc2902w/coord/llhxyz.htm
https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc2131
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking
https://tools.ietf.org/html/rfc791
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Configuring_Networking
https://tools.ietf.org/html/rfc792
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Mailbox

https://epos.lisha.ufsc.br/ 14/01/2026 32

Header
include/icmp.h

Interface

Examples

4.5.8.5. UDP

The User Datagram Protocol (UDP) is implemented in EPOS following RFC 768. An UDP
Communicator is defined in EPOS as Mailbox<UDP>. See Mailbox above for the general interface.
Messages for this Mailbox are UDP datagrams specified in the RFC and fully abstracted by EPOS.
The interface is therefore that of any Mailbox.
Examples

4.5.8.6. TCP

The Transmission Control Protocol (TCP) is implemented in EPOS following RFC 793. A TCP
Communicator is defined in EPOS as Port<TCP>, which upon each connection yields a Link<TPC>.
See Communicator above for the general interfaces. Packet for this Mailbox are TCP segments
specified in the RFC and fully abstracted by EPOS. The interfaces are therefore those of Port and
Link.
Examples



class ICMP { public: // ICMP Packet Types typedef unsigned char Type; enum { ECHO_REPLY =
0, UNREACHABLE = 3, SOURCE_QUENCH = 4, REDIRECT = 5, ALTERNATE_ADDRESS = 6,
ECHO = 8, ROUTER_ADVERT = 9, ROUTER_SOLIC = 10, TIME_EXCEEDED = 11,
PARAMETER_PROBLEM = 12, TIMESTAMP = 13, TIMESTAMP_REPLY = 14, INFO_REQUEST =
15, INFO_REPLY = 16, ADDRESS_MASK_REQ = 17, ADDRESS_MASK_REP = 18, TRACEROUTE
= 30, DGRAM_ERROR = 31, MOBILE_HOST_REDIR = 32, IPv6_WHERE_ARE_YOU = 33,
IPv6_I_AM_HERE = 34, MOBILE_REG_REQ = 35, MOBILE_REG_REP = 36,
DOMAIN_NAME_REQ = 37, DOMAIN_NAME_REP = 38, SKIP = 39 }; // ICMP Packet Codes
typedef unsigned char Code; enum { NETWORK_UNREACHABLE = 0, HOST_UNREACHABLE =
1, PROTOCOL_UNREACHABLE = 2, PORT_UNREACHABLE = 3, FRAGMENTATION_NEEDED =
4, ROUTE_FAILED = 5, NETWORK_UNKNOWN = 6, HOST_UNKNOWN = 7, HOST_ISOLATED =
8, NETWORK_PROHIBITED = 9, HOST_PROHIBITED = 10, NETWORK_TOS_UNREACH = 11,
HOST_TOS_UNREACH = 12, ADMIN_PROHIBITED = 13, PRECEDENCE_VIOLATION = 14,
PRECEDENCE_CUTOFF = 15 }; class Address: public IP::Address; struct Header { unsigned char
_type; unsigned char _code; unsigned short _checksum; unsigned short _id; unsigned short
_sequence; } __attribute__((packed)); // ICMP Packet static const unsigned int MTU = 56; static
const unsigned int HEADERS_SIZE = sizeof(IP::Header) + sizeof(Header); typedef unsigned char
Data[MTU]; class Packet: public Header { public: Packet(); Packet(const Type & type, const Code
& code); Packet(const Type & type, const Code & code, unsigned short id, unsigned short seq);
Header * header(); template<typename T> T * data(); void sum(); bool check(); private: Data
_data; } __attribute__((packed)); typedef Packet PDU; }







https://tools.ietf.org/html/rfc768
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Mailbox
https://tools.ietf.org/html/rfc793
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Communication

https://epos.lisha.ufsc.br/ 14/01/2026 33

4.5.9. Networking Configuration
Enabling networking in EPOS is easy. You just have to set Traits<Build>::NODES to a value larger
than one. The following configuration snippet sets up a PC with 3 NICs, 2 x PCNet32 and 1 x
RTL8139, enables IP for all of them and defines a MAC-based IP selection for the first, STATIC for
the second, and DCHP for the third.
Configuration

4.6. Sensing and Actuation (Wireless Sensor Network)
Wireless Sensor Network (WSN) has been a very hot topic of research for EPOS. This family of
abstractions consolidates over a decade of research behind a simple, easy-to-use, application-
oriented API. Sensors and Actuators are both abstracted to users through a novel, data-centric
construct we named SmartData.

4.6.1. SmartData
SmartData encapsulates a large set of recurring design patterns in the realm of WSN behind a
powerful, application-oriented interface. A SmartData "observes" a TSTP network and a Transducer
(a sensor or an actuator) and interfaces them in a data-centric way. Programmers interact with it
just like they would with an ordinary piece of Data coming either from the network or from a
(potentially remote) transducer. A SmartData can be of two kinds: a Physical Quantity identified
through the corresponding SI (derived) Unit, or a piece of Digital data. The first is used for most
sensors (and related actuators) that we call a "meter": accelerometer, magnetometer, thermometer,
voltmeter, amperimeter, etc. The latter is used for transducers whose final purpose is to produce
digital data, such as switches, buttons, cameras, and audio capture devices.

SmartData honors TSTP option for a Convergecast routing strategy that does not use addresses in
favor of Space-Time coordinates. Consequently, whenever a SmartData is advertised, it is advertised



template<> struct Traits<Ethernet>: public Traits<Machine_Common> { typedef
LIST<PCNet32, PCNet32, RTL8139> DEVICES; static const unsigned int UNITS =
DEVICES::Length; static const bool enabled = (Traits<Build>::NODES > 1) && (UNITS > 0); };
template<> struct Traits<Build> { static const unsigned int NODES = 100; }; template<> struct
Traits<Network>: public Traits<Build> { typedef LIST<IP, IP, IP> NETWORKS; static const
unsigned int RETRIES = 3; static const unsigned int TIMEOUT = 10; // s static const bool enabled
= (Traits<Build>::NODES > 1) && (NETWORKS::Length > 0); }; template<> struct Traits<IP>:
public Traits<Network> { typedef Ethernet NIC_Family; static constexpr unsigned int NICS[] =
{0, 1, 2}; static const unsigned int UNITS = COUNTOF(NICS); struct Default_Config { static
const unsigned int TYPE = DHCP; static const unsigned long ADDRESS = 0; static const unsigned
long NETMASK = 0; static const unsigned long GATEWAY = 0; }; template<unsigned int UNIT>
struct Config: public Default_Config {}; static const unsigned int TTL = 0x40; // Time-to-live
static const bool enabled = Traits<Network>::enabled && (NETWORKS::Count<IP>::Result >
0); }; template<> struct Traits<IP>::Config<0> { static const unsigned int TYPE = MAC; static
const unsigned long ADDRESS = 0x0a000100; // 10.0.1.x x=MAC[5] static const unsigned long
NETMASK = 0xffffff00; // 255.255.255.0 static const unsigned long GATEWAY = 0; // 10.0.1.1 };
template<> struct Traits<IP>::Config<1> { static const unsigned int TYPE = STATIC; static
const unsigned long ADDRESS = 0x0a000110; // 10.0.1.16 static const unsigned long NETMASK
= 0xffffff00; // 255.255.255.0 static const unsigned long GATEWAY = 0; // 10.0.1.1 }; template<>
struct Traits<IP>::Config<2> { static const unsigned int TYPE = DHCP; static const unsigned
long ADDRESS = 0; static const unsigned long NETMASK = 0; static const unsigned long
GATEWAY = 0; };

https://en.wikipedia.org/wiki/Wireless_sensor_network
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#TSTP
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Transducers
https://en.wikipedia.org/wiki/Physical_quantity
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/Distributed_minimum_spanning_tree

https://epos.lisha.ufsc.br/ 14/01/2026 34

to the Sink, which can declare Interests for a given kind of (smart) data. Sensors behind a
SmartData can Respond to such interests, while actuators can receive Commands from the Sink.

Header
include/smartdata.h

Interface

Types

Unit
Represents the type of the encapsulated piece of data, either an SI Quantity or Digital data. For
SI Quantities, Unit encodes the associated SI Unit. For Digital data, it encodes a type Id. See SI
Quantities for additional information.

Value
Represents the encapsulated piece of data (i.e. the SmartData content). For Digital data, it
defines a string of bytes (unsigned char[]). For SI Quantities, Value is an alias to the native
C++ type associated with the NUM field encoded in Unit. See SI Quantities for additional
information.

Error
For SI Quantities, Error represents the scale of the measurement error as an order of
magnitude (i.e. 10ERROR).

Coordinates
Represents the location where the data was produced. It designates a 3D-point in a Cartesian
Coordinate System. This type does not assume a fixed center for the Coordinate System. It can
be used to represent positions relative to the Sink, to Earth's center or to any other arbitrary
point. The (x, y, z) triple is stored as 8, 16, or 32-bit scaled signed integers depending on the
configured network size. See TSTP Coordinates for additional information.

Time
Represents the time in which the data was produced as an offset in µs from
Traits<RTC>::EPOCH (usually January 1st, 1970). It is stored as an unsigned long long int (64
bits).

Mode
Defines the operation mode for a local transducer (sensor or actuator). Has no meaning for
remote transducers.

PRIVATE: the local SmartData is private to the process that created it. It does not get
advertised to the network and therefore cannot be monitored nor controlled remotely.



template<typename Transducer> class SmartData: private TSTP::Observer, private
Transducer::Observer { public: static const unsigned int UNIT = Transducer::UNIT; static const
unsigned int NUM = Transducer::NUM; static const unsigned int ERROR = Transducer::ERROR;
typedef TSTP::Unit Unit; typedef typename TSTP::Unit::Get<NUM>::Type Value; typedef
TSTP::Error Error; typedef TSTP::Coordinates Coordinates; typedef TSTP::Time Time; enum
Mode { PRIVATE = 0, ADVERTISED = 1, COMMANDED = 3 }; public: Smart_Data(unsigned int
dev, const Microsecond & expiry, const Mode & mode = PRIVATE); Smart_Data(const Region &
region, const Microsecond & expiry, const Microsecond & period = 0); ~Smart_Data(); operator
Value(); const Coordinates & location() const; const Time & time() const; };

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://en.wikipedia.org/wiki/Observational_error
https://en.wikipedia.org/wiki/Coordinate_system#Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system#Cartesian_coordinate_system
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Coordinates

https://epos.lisha.ufsc.br/ 14/01/2026 35

ADVERTISED: the local SmartData is advertised to the network and therefore can be
remotely monitored (by the sink).
COMMANDED: the local SmartData is advertised to the network to be remotely controlled (by
the sink). Declaring a local SmartData COMMANDED does not implicitly means it is
ADVERTISED. That must be explicitly declared using (ADVERTISED | COMMANDED).

Constants

UNIT
Defines the type of the data produced by the transducer associated with an SmartData instance.
It is a numerical representation of a Unit. See SI Quantities for additional information.

NUM
It is only defined for SmartData that encapsulate SI Quantities, case in which it designates how
that quantity is encoded. It corresponds to the NUM field in Unit. See SI Quantities for additional
information.

ERROR
It is only defined for SmartData that encapsulate SI Quantities, case in which it designates the
associated transducer's measurement error scale as a magnitude order.

Methods

Smart_Data(unsigned int dev, const Microsecond & expiry, const Mode & mode =
PRIVATE)
Creates a SmartData to abstract the unit dev of (local) Transducer (a template parameter
designating either a Smart Sensor or a Smart Actuator). The data sampled from the transducer
is considered valid for expiry µs. Accessing the data through operator Value() after this time
in invalid. The default mode of operation is PRIVATE.
Note: during the application development phase, SmartData can be configured to log access to
expired data or even to produce fatal errors when it happens. However, this should never
happen in a production system and ensuring this is a design matter.

Smart_Data(const Region & region, const Microsecond & expiry, const Microsecond &
period = 0)
Creates a SmartData to abstract a remote Transducer capable of handling UNIT in a region
designated by region (an sphere of radius r centered at (x, y, z) from t0 until t1; see TSTP
Coordinates for additional information). The locally stored data received from the transducer is
considered valid for expiry µs. Accessing the data through operator Value() after this time in
invalid. If period is specified, then transducers matching the selection criteria (UNIT, region)
are instructed to send new data every period µs.

const Coordinates & location() const
Returns the location where the data was produced. Either TSTP::here() for local transducers
or the coordinates of the remote transducer that produced the data.
Note: TSTP uses a Cartesian Coordinate System centered at the Sink. This method converts
such relative coordinates to an absolute representation centered at the Earth's center whenever
the Sink absolute location is known.

const Time & time() const
Returns the time in which data was produced as an offset in µs from Traits<RTC>::EPOCH
(usually January 1st, 1970).

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Coordinates
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Coordinates

https://epos.lisha.ufsc.br/ 14/01/2026 36

4.6.2. Unit
EPOS type Unit designates the kind of data encapsulated in a SmartData object, either an SI
Quantity or plain Digital Data. Its most significant bit (i.e. bit 31) determines the case: encoded SI
Units have it set (i.e. field SI = 1), while Digital Data have it clear (i.e. field SI = 0)

A Physical Quantity can be identified through the corresponding SI (derived) Unit. Whenever a
SmartData encapsulates a physical quantity, such information is encoded in a manner inspired by
IEEE 1451 TEDs. Conversely, Digital Data is simply tagged with an application-specific type and a
length. SmartData types are allocated by LISHA on demand and their lengths are type-dependent.
The highest significant bit of the type field, multi, defines if a Digital Unit represents a
MultiSmartData, a collection of SmartData that share common characteristics and are merged into a
single structure to avoid the replication of metadata. For instance, merging data with the same
origin (Multi-Unit SmartData) or same Unit (Multi-Value or Multi-Device SmartData). Most types will
be associated with a length expressed in bytes, limiting the SmartData size to 64 KB, but some types
will define coarser granularities (currently limited by the IoT database to 2GB per SmartData
instance). The length field of a digital unit is network protocol dependent, which with TSTP over
IEEE 802.15.4 is limited to 81 bytes (this size may vary with network size and lifespan due to the
scale of time and space).

Header
include/smartdata.h

Digital Data Format

Bit 31 29 16 0

0 multi type length

SI Unit Format

Bit 31 29 27 24 21 18 15 12 9 6 3 0

1 NUM MOD sr+4 rad+4 m+4 kg+4 s+4 A+4 K+4 mol+4 cd+4

Interface



class Unit { public: // Valid values for field SI enum : unsigned long { DIGITAL = 0U << 31, // The
Unit is plain digital data. Subsequent 15 bits designate the data type. Lower 16 bits are
application-specific, usually a device selector. SI = 1U << 31, // The Unit is SI. Remaining bits
are interpreted as specified here. SID = SI }; // Valid values for field NUM enum : unsigned long
{ I32 = 0 << 29, // Value is an integral int stored in the 32 last significant bits of a 32-bit big-
endian integer. I64 = 1 << 29, // Value is an integral int stored in the 64 last significant bits of a
64-bit big-endian integer. F32 = 2 << 29, // Value is a real int stored as an IEEE 754 binary32
big-endian floating point. D64 = 3 << 29, // Value is a real int stored as an IEEE 754 binary64
big-endian double precision floating point. NUM = D64 // AND mask to select NUM bits }; // Valid
values for field MOD enum : unsigned long { DIR = 0 << 27, // Unit is described by the product
of SI base units raised to the powers recorded in the remaining fields. DIV = 1 << 27, // Unit is
U/U, where U is described by the product SI base units raised to the powers recorded in the

https://en.wikipedia.org/wiki/Physical_quantity
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/IEEE_1451
https://epos.lisha.ufsc.br/IoT+Platform#Bulk_Data_Insertion

https://epos.lisha.ufsc.br/ 14/01/2026 37

remaining fields. LOG = 2 << 27, // Unit is log_e(U), where U is described by the product of SI
base units raised to the powers recorded in the remaining fields. LOG_DIV = 3 << 27, // Unit is
log_e(U/U), where U is described by the product of SI base units raised to the powers recorded in
the remaining fields. MOD = LOG_DIV // AND mask to select MOD bits }; // Masks to select the SI
units enum : unsigned long { SR = 7 << 24, RAD = 7 << 21, M = 7 << 18, KG = 7 << 15, S = 7
<< 12, A = 7 << 9, K = 7 << 6, MOL = 7 << 3, CD = 7 << 0 }; // Mask to select field LEN of
digital data enum : unsigned long { LEN = (1 << 16) - 1 }; // Helper to create digital units
template<unsigned int _TYPE, bool _MULTI , unsigned int _SUBTYPE, unsigned int _LEN> class
Digital_Unit { public: // DIGITAL | multi | type | length enum : unsigned long { UNIT = DIGITAL |
_MULTI << 29 | _TYPE << 24 | _SUBTYPE << 16 | _LEN << 0 }; // LEN field can be an index
into a dictionary of accepted lengths for the specific unit private: // Compile-time verifications
static const typename IF<(_MULTI & (~1)) , void, bool>::Result Invalid_TYPE = false; static const
typename IF<(_TYPE & (~((1 << 6) - 1))), void, bool>::Result Invalid_TYPE = false; static const
typename IF<(_SUBTYPE & (~((1 << 8) - 1))), void, bool>::Result Invalid_SUBTYPE = false;
static const typename IF<(_LEN & (~LEN)) , void, bool>::Result Invalid_LEN = false; }; // Helper
to create SI units template<int _MOD, int _SR, int _RAD, int _M, int _KG, int _S, int _A, int _K, int
_MOL, int _CD> class SI_Unit { public: // SI | MOD | sr | rad | m | kg | s | A | K | mol | cd enum :
unsigned long { UNIT = SI | _MOD | (4 + _SR) << 24 | (4 + _RAD) << 21 | (4 + _M) << 18 | (4
+_KG) << 15 | (4 + _S) << 12 | (4 + _A) << 9 | (4 + _K) << 6 | (4 + _MOL) << 3 | (4 + _CD) };
private: // Compile-time verifications static const typename IF<(_MOD & (~MOD)), void,
bool>::Result Invalid_MOD = false; static const typename IF<((_SR + 4) & (~7u)), void,
bool>::Result Invalid_SR = false; static const typename IF<((_RAD + 4) & (~7u)), void,
bool>::Result Invalid_RAD = false; static const typename IF<((_M + 4) & (~7u)), void,
bool>::Result Invalid_M = false; static const typename IF<((_KG + 4) & (~7u)), void,
bool>::Result Invalid_KG = false; static const typename IF<((_S + 4) & (~7u)), void,
bool>::Result Invalid_S = false; static const typename IF<((_A + 4) & (~7u)), void, bool>::Result
Invalid_A = false; static const typename IF<((_K + 4) & (~7u)), void, bool>::Result Invalid_K =
false; static const typename IF<((_MOL + 4) & (~7u)), void, bool>::Result Invalid_MOL = false;
static const typename IF<((_CD + 4) & (~7u)), void, bool>::Result Invalid_CD = false; }; //
Typical SI Quantities enum Quantity : unsigned long { // mod, sr, rad, m, kg, s, A, K, mol, cd unit |
HEX Acceleration = SI_Unit<DIR, +0, +0, +1, +0, -2, +0, +0, +0, +0>::UNIT, // m/s2 | Angle =
SI_Unit<DIR, +0, +1, +0, +0, +0, +0, +0, +0, +0>::UNIT, // rad Amount_of_Substance =
SI_Unit<DIR, +0, +0, +0, +0, +0, +0, +0, +1, +0>::UNIT, // mol Angular_Velocity =
SI_Unit<DIR, +0, +1, +0, +0, -1, +0, +0, +0, +0>::UNIT, // rad/s Area = SI_Unit<DIR, +0, +0,
+2, +0, +0, +0, +0, +0, +0>::UNIT, // m2 Current = SI_Unit<DIR, +0, +0, +0, +0, +0, +1, +0,
+0, +0>::UNIT, // Ampere Electric_Current = Current, Force = SI_Unit<DIR, +0, +0, +1, +1, -2,
+0, +0, +0, +0>::UNIT, // Newton Humidity = SI_Unit<DIR, +0, +0, -3, +1, +0, +0, +0, +0,
+0>::UNIT, // kg/m3 Length = SI_Unit<DIR, +0, +0, +1, +0, +0, +0, +0, +0, +0>::UNIT, // m
Luminous_Intensity = SI_Unit<DIR, +0, +0, +0, +0, +0, +0, +0, +0, +1>::UNIT, // cd Mass =
SI_Unit<DIR, +0, +0, +0, +1, +0, +0, +0, +0, +0>::UNIT, // kg Power = SI_Unit<DIR, +0, +0,
+2, +1, -3, +0, +0, +0, +0>::UNIT, // Watt Pressure = SI_Unit<DIR, +0, +0, -1, +1, -2, +0, +0,
+0, +0>::UNIT, // Pascal Velocity = SI_Unit<DIR, +0, +0, +1, +0, -1, +0, +0, +0, +0>::UNIT, //
m/s Sound_Intensity = SI_Unit<DIR, +0, +0, +0, +1, -3, +0, +0, +0, +0>::UNIT, // W/m2
Temperature = SI_Unit<DIR, +0, +0, +0, +0, +0, +0, +1, +0, +0>::UNIT, // Kelvin Time =
SI_Unit<DIR, +0, +0, +0, +0, +1, +0, +0, +0, +0>::UNIT, // s Speed = Velocity, Volume =
SI_Unit<DIR, +0, +0, +3, +0, +0, +0, +0, +0, +0>::UNIT, // m3 Voltage = SI_Unit<DIR, +0, +0,
+2, +1, -3, -1, +0, +0, +0>::UNIT, // Volt Water_Flow = SI_Unit<DIR, +0, +0, +3, +0, -1, +0,
+0, +0, +0>::UNIT, // m3/s Ratio = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4, -4>::UNIT, // not
an SI unit Percent = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4, -3>::UNIT, // not an SI unit, a
ratio < 1 PPM = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4, -2>::UNIT, // not an SI unit, a ratio
in parts per million PPB = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4, -1>::UNIT, // not an SI

https://epos.lisha.ufsc.br/ 14/01/2026 38

unit, a ratio in parts per billion Relative_Humidity = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4,
+0>::UNIT, // not an SI unit, a percentage representing the partial pressure of water vapor in the
mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a given
temperature Power_Factor = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4, +1>::UNIT, // not an SI
unit, a ratio of the real power absorbed by the load to the apparent power flowing in the circuit; a
dimensionless number in [-1,1] Counter = SI_Unit<LOG_DIV, -4, -4, -4, -4, -4, -4, -4, -4,
+2>::UNIT, // not an SI unit, the current value of an external counter Antigravity =
SI_Unit<LOG_DIV, +3, +3, +3, +3, +3, +3, +3, +3, +3>::UNIT // for Dummy_Transducer :-) }; //
Digital data types enum Digital_Data: unsigned long { // multi, type, subtype, length // Switches
Direction = Digital_Unit<0, 0, 1, 1>::UNIT, Switch = Digital_Unit<0, 0, 0, 1>::UNIT, On_Off =
Switch, // RFIDs and SmartCartds RFID32 = Digital_Unit<0, 1, 0, 4>::UNIT, // Audio and Video
(from RTP) A/V Hz Ch Ref PCMU = Digital_Unit<0, 2, 0, 0>::UNIT, // A 8000 1 [RFC3551] GSM =
Digital_Unit<0, 2, 3, 0>::UNIT, // A 8000 1 [RFC3551] G723 = Digital_Unit<0, 2, 4, 0>::UNIT, //
A 8000 1 [Vineet_Kumar][RFC3551] DVI4_8 = Digital_Unit<0, 2, 5, 0>::UNIT, // A 8000 1
[RFC3551] DVI4_16 = Digital_Unit<0, 2, 6, 0>::UNIT, // A 16000 1 [RFC3551] LPC =
Digital_Unit<0, 2, 7, 0>::UNIT, // A 8000 1 [RFC3551] PCMA = Digital_Unit<0, 2, 8, 0>::UNIT, //
A 8000 1 [RFC3551] G722 = Digital_Unit<0, 2, 9, 0>::UNIT, // A 8000 1 [RFC3551] L16_2 =
Digital_Unit<0, 2, 10, 0>::UNIT, // A 44100 2 [RFC3551] L16_1 = Digital_Unit<0, 2, 11,
0>::UNIT, // A 44100 1 [RFC3551] QCELP = Digital_Unit<0, 2, 12, 0>::UNIT, // A 8000 1
[RFC3551] CN = Digital_Unit<0, 2, 13, 0>::UNIT, // A 8000 1 [RFC3389] MPA = Digital_Unit<0,
2, 14, 0>::UNIT, // A 90000 [RFC3551][RFC2250] G728 = Digital_Unit<0, 2, 15, 0>::UNIT, // A
8000 1 [RFC3551] DVI4_11 = Digital_Unit<0, 2, 16, 0>::UNIT, // A 11025 1 [Joseph_Di_Pol]
DVI4_22 = Digital_Unit<0, 2, 17, 0>::UNIT, // A 22050 1 [Joseph_Di_Pol] G729 = Digital_Unit<0,
2, 18, 0>::UNIT, // A 8000 1 [RFC3551] CelB = Digital_Unit<0, 2, 25, 0>::UNIT, // V 90000
[RFC2029] JPEG = Digital_Unit<0, 2, 26, 0>::UNIT, // V 90000 [RFC2435] nv = Digital_Unit<0,
2, 28, 0>::UNIT, // V 90000 [RFC3551] H261 = Digital_Unit<0, 2, 31, 0>::UNIT, // V 90000
[RFC4587] MPV = Digital_Unit<0, 2, 32, 0>::UNIT, // V 90000 [RFC2250] MP2T =
Digital_Unit<0, 2, 33, 0>::UNIT, // AV 90000 [RFC2250] H263 = Digital_Unit<0, 2, 34, 0>::UNIT,
// V 90000 [Chunrong_Zhu] WAV_FLAC = Digital_Unit<0, 2, 35, 0>::UNIT, // A 20000 WAV -
FLAC compression // MultiUnit SmartData Motion_Vector_Global = Digital_Unit<1, 0, 0,
1>::UNIT, // subtype is object class, LEN > 1 is a list type with LEN elements
Motion_Vector_Local = Digital_Unit<1, 1, 0, 1>::UNIT // subtype is object class, LEN > 1 is a list
type with LEN elements }; // SI Factors typedef char Factor; enum { // Name Code Symbol Factor
ATTO = (8 - 8), // a 0.000000000000000001 FEMTO = (8 - 7), // f 0.000000000000001 PICO = (8 -
6), // p 0.000000000001 NANO = (8 - 5), // n 0.000000001 MICRO = (8 - 4), // μ 0.000001 MILI =
(8 - 3), // m 0.001 CENTI = (8 - 2), // c 0.01 DECI = (8 - 1), // d 0.1 NONE = (8), // - 1 DECA = (8
+ 1), // da 10 HECTO = (8 + 2), // h 100 KILO = (8 + 3), // k 1000 MEGA = (8 + 4), // M 1000000
GIGA = (8 + 5), // G 1000000000 TERA = (8 + 6), // T 1000000000000 PETA = (8 + 7) // P
1000000000000000 }; template<unsigned long UNIT> struct Get { typedef typename
IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned long)(UNIT & NUM) == I32), long int,
typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned long)(UNIT & NUM) == I64),
long long int, typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned long)(UNIT &
NUM) == F32), float, typename IF<((unsigned long)(UNIT & SID) == SI) && ((unsigned
long)(UNIT & NUM) == D64), double, typename IF<((unsigned long)(UNIT & SID) == DIGITAL)
&& ((unsigned long)(UNIT & LEN) == 1), unsigned char, typename IF<((unsigned long)(UNIT &
SID) == DIGITAL) && ((unsigned long)(UNIT & LEN) == 2), unsigned short, typename
IF<((unsigned long)(UNIT & SID) == DIGITAL) && ((unsigned long)(UNIT & LEN) == 4),
unsigned long, typename IF<((unsigned long)(UNIT & SID) == DIGITAL) && ((unsigned
long)(UNIT & LEN) > 4), unsigned char*, //[UNIT & LEN]
void>::Result>::Result>::Result>::Result>::Result>::Result>::Result>::Result Type; };
template<typename T> struct GET; template<unsigned long U> struct Wrap { enum : unsigned

https://epos.lisha.ufsc.br/ 14/01/2026 39

Constants

NUM field
I32: quantity is encoded as a 32-bit, little-endian, integral number.
I64: quantity is encoded as a 64-bit, little-endian, integral number.
F32: quantity is encoded as a 32-bit, little-endian, IEEE 754 binary32, floating point
number.
D64: quantity is encoded as a 64-bit, little-endian, IEEE 754 binary64, floating point
number.

MOD field
DIR: unit is directly described by the product of SI base units raised to the powers recorded
in the remaining fields.
DIV: unit is U/U, where U is described by the product SI base units raised to the powers
recorded in the remaining fields.
LOG: unit is loge(U), where U is described by the product of SI base units raised to the
powers recorded in the remaining fields.
LOG_DIV: unit is loge(U/U), where U is described by the product of SI base units raised to
the powers recorded in the remaining fields.

Basic Units fields (encoded as 4 + exponent, with exponent ranging from -4 to +3)
SR: exponent of the Steradian component of the SI derived unit.
RAD: exponent of the Radian component of the SI derived unit.
M: exponent of the Meter component of the SI derived unit.
KG: exponent of the Kilogram component of the SI derived unit.
S: exponent of the Second component of the SI derived unit.
A: exponent of the Ampere component of the SI derived unit.
K: exponent of the Kelvin component of the SI derived unit.
MOL: exponent of the Mole component of the SI derived unit.
CD: exponent of the Candela component of the SI derived unit.

Typical SI Derived Units as a function of Basic Units fields
A set of constants designating typical derivations from SI Basic Units is provided here.

Counts (Not SI UNITS)
Counts, even parts per million and percentages, do not fit the (type, subtype, length) idea of
Digital UNITS. Therefore, they are modeled as SI UNITS. They are:

Ratio;

long { UNIT = U }; }; public: Unit(): _unit(0) {} Unit(unsigned long u) { _unit = u; } operator
unsigned long() const { return _unit; } unsigned int value_size() const { return (_unit & SI) &&
((_unit & NUM) == I32) ? sizeof(long int) : (_unit & SI) && ((_unit & NUM) == I64) ? sizeof(long
long int) : (_unit & SI) && ((_unit & NUM) == F32) ? sizeof(float) : (_unit & SI) && ((_unit &
NUM) == D64) ? sizeof(double) : !(_unit & SI) ? _unit & LEN : 0; } static unsigned int
value_size(unsigned long unit) { return (unit & SI) && ((unit & NUM) == I32) ? sizeof(long int) :
(unit & SI) && ((unit & NUM) == I64) ? sizeof(long long int) : (unit & SI) && ((unit & NUM) ==
F32) ? sizeof(float) : (unit & SI) && ((unit & NUM) == D64) ? sizeof(double) : !(unit & SI) ? unit &
LEN : 0; } int sr() const { return ((_unit & SR) >> 24) - 4 ; } int rad() const { return ((_unit &
RAD) >> 21) - 4 ; } int m() const { return ((_unit & M) >> 18) - 4 ; } int kg() const { return
((_unit & KG) >> 15) - 4 ; } int s() const { return ((_unit & S) >> 12) - 4 ; } int a() const { return
((_unit & A) >> 9) - 4 ; } int k() const { return ((_unit & K) >> 6) - 4 ; } int mol() const { return
((_unit & MOL) >> 3) - 4 ; } int cd() const { return ((_unit & CD) >> 0) - 4 ; } }
__attribute__((packed));

https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://epos.lisha.ufsc.br/Usefull+SmartData+Units

https://epos.lisha.ufsc.br/ 14/01/2026 40

Percent, a ratio < 1;
Parts per Milion (PPM), a ratio in parts per million, and Parts per Billion (PPB), a ratio in
parts per billion;
Relative_Humidity, a percentage representing the partial pressure of water vapor in the
mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a
given temperature;
Power_Factor, a ratio of the real power absorbed by the load to the apparent power flowing
in the circuit; a dimensionless number in the range [-1,1];
Counter, the current value of an external counter;

MultiUnits
AV MultiUnits are defined at the LISHA's AV SmartData Model.

SI Unit Prefixes
A set of constants designating the SI Unit Prefixes is provided.

Metaprograms

Get<int N>::Type
Returns the C++ native type Value is aliased to:

I32: signed long int;
I64: signed long long int;
F32: float;
D64: double.

GET<typename T>::NUM
Returns the NUM field associated with T:

double: D64.
float: F32.
long long int: I64.
otherwise: I32.

Methods

Interoperability with unsigned long
A constructor and a conversion operator are provided so that Unit can be used as if it were an
ordinary unsigned long.

Basic SI Unit exponent extraction
Methods are provided to get the exponent for each of the SI Basic Units in Unit.

Examples

4.6.3. Persistent Storage
Whenever a piece of SmartData is stored in a database, file system, or any sort of persistent
memory that can be externally accessed, a canonical format is used.
Header
include/smartdata.h



https://lisha.ufsc.br/SDAV+-+SmartData+Model

https://epos.lisha.ufsc.br/ 14/01/2026 41

Interface

STATIC

MOBILE

Value: The type Value is dependent on the unit specification as previously described.
ID: a 64-bit cryptographic identifier resultant of a hash of the Public certificate of a mobile
device producing SmartData. During execution, the mobile version of SmartData comprises
an origin based on ID and time instead of Space and Time. For Persistent storage, a source
of position is assumed to be available at the mobile device to compose the DB_Record.
However, a DB_Series will use the origin information and base coordinates on the
DB_Records for the specific ID and time range (t0 until t1) and the radio range of the
object.
longitude, latitude, altitude: For local management of SmartData in a mobile device,
such as an Autonomous Vehicles (AV), several objects identified via vision perception are
represented with coordinates in relation to the AV current position, with the absence of the
Z coordinate (altitude). Therefore, to avoid errors in local processing due to converting
latitude and longitude to ECEF coordinates, position is handled locally in latitude and
longitude represented in radians SI Quantity. Nevertheless, when data is communicated in
V2X or forwarded to persistent storage, a transformation is applied to the coordinates
based on the vehicle coordinates (which comprise the altitude) to obtain a complete
perception of longitude, latitude, and altitude.

Types

DB_Record
Defines an interoperable format for the content of a SmartData representing Digital Data or an
SI Quantity, according to unit value. The format is used for both, storing and transmission
using non-native protocols. See IoT+with+EPOS for additional information.

DB_Series
Defines an interoperable format to designate time-series of Smart Data stored in a database or
streamed using non-native protocols. See IoT+with+EPOS for additional information.



template<typename Transducer> class Smart_Data: private TSTP::Observer, private
Transducer::Observer { public: struct DB_Record { unsigned char type; unsigned long unit;
double value; unsigned char error; unsigned char confidence; long x; long y; long z; long device;
unsigned long long t; }; struct DB_Series { unsigned char type; unsigned long unit; long x; long y;
long z; long device; unsigned long r; unsigned long long t0; unsigned long long t1; }; };



template<typename Transducer> class Smart_Data: private TSTP::Observer, private
Transducer::Observer { public: struct DB_Record { unsigned char type; unsigned long unit; Value
value; unsigned char error; unsigned char confidence; unsigned char[8] ID; float longitude; float
latitude; float altitude; long device; unsigned long long t; }; struct DB_Series { unsigned char
type; unsigned long unit; unsigned char[8] ID; long device; unsigned long long t0; unsigned long
long t1; }; };

https://epos.lisha.ufsc.br/IoT+with+EPOS
https://epos.lisha.ufsc.br/IoT+with+EPOS

https://epos.lisha.ufsc.br/ 14/01/2026 42

Methods

DB_Record db_record() const
Returns an DB_Record representing the content of this SmartData in an interoperable format.

DB_Series db_series() const
Returns a Series associated with this SmartData in an interoperable format.

4.6.4. Transducers
A Transducer class interfaces a hardware mediator for a transducer (a sensor and/or actuator) with
a SmartData instance. Some Transducers may require the user to call the constructor for hardware
initialization and binding. Besides that, the application should only use SmartData objects, and not
the Transducers directly. Each specific sensor has a transducer class, and we show a simple example
below. Consult the header file for all available transducers and their particular implementations.

Header
include/machine/<machine>/transducer.h

Interface

Types

Observer
A redefinition of the mediator's Observer type. Only present if the mediator is observable in an
event-driven scheme (i.e. when INTERRUPT = true).

Observed
A redefinition of the mediator's Observed type. Only present if the mediator is observable in an
event-driven scheme (i.e. when INTERRUPT = true).

Smart_Transducer
At the end of the transducer header file, there are definitions for all available SmartData for the
corresponding machine, with appropriate Transducer type bindings. These are the classes that
the application should use.

Constants

UNIT
Defines the type of data produced by the sensor associated with this Transducer. It is a
numerical representation of a Unit. See SI Quantities for additional information.

NUM
It is only defined for Transducers that encapsulate SI Quantities, case in which it designates



class Transducer: public Transducer_Hardware_Mediator { public: static const unsigned int
UNIT; static const unsigned int NUM; static const int ERROR; static const bool INTERRUPT;
static const bool POLLING; typedef Transducer_Hardware_Mediator::Observer Observer; typedef
Transducer_Hardware_Mediator::Observed Observed; public: Transducer(); static void
sense(unsigned int dev, Smart_Data<Transducer> * data); static void actuate(unsigned int dev,
Smart_Data<Transducer> * data, const Smart_Data<Transducer>::Value & command); };
typedef Smart_Data<Transducer> Smart_Transducer;

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit

https://epos.lisha.ufsc.br/ 14/01/2026 43

how that quantity is encoded. It corresponds to the NUM field in Unit. See SI Quantities for
additional information.

ERROR
It is only defined for Transducers that encapsulate SI Quantities, case in which it designates the
associated transducer's measurement error scale as a magnitude order.

INTERRUPT
Whether this transducer is observable in an event-driven way. If true, the SmartData interfacing
with this transducer will call its attach method during construction, so that it can be notified
whenever a new value is available from the sensor and call its sense method to get that value
(See Observer for details on observers).

POLLING
Whether this transducer is observable in a time-triggered way. If true, the SmartData
interfacing with this transducer may call its sense method whenever it needs a new sensor
reading.

Methods

Transducer()
Some transducers require the application to call their constructors in order to initialize the
corresponding hardware mediator and bind it to a dev number known to a SmartData instance.
Consult the actual implementation you are using for details.

static void sense(unsigned int dev, Smart_Data<Transducer> * data)
This method is called by a SmartData instance when it needs to get a new reading from the
sensor when this transducer is capable of sensing. This method implements the actual hardware
reading, usually by forwarding it to the base mediator class, and assigns the results to *data.
SmartData encapsulates all the protocol interactions and decisions regarding to when this
method should be called. The dev parameter is used to distinguish between multiple sensors of
the same kind, and it is defined by the user and passed to the SmartData constructor. Some
transducers require the same dev number to be passed at the constructor for correct binding.
Consult the actual implementation you are using for details.

static void actuate(unsigned int dev, Smart_Data<Transducer> * data, const
Smart_Data<Transducer>::Value & command)
Similar to sense. The value command should be written to the hardware mediator, when this
Transducer is capable of actuating.

Examples



// SmartData Declarations typedef Smart_Data<Accelerometer> Acceleration; typedef
Smart_Data<Voltmeter> Voltage; typedef Smart_Data<Thermometer> Temperature; typedef
Smart_Data<Photometer> Illuminace; // SmartData Usage // Local acceleration data from
accelerometer "0" // with expiration time of "expiry" µs. Acceleration a(0, expiry); cout << "The
acceleration here is" << a << "m/s^2." << endl; // Remote temperature in Kelvin from a region
centered at (x, y, z), with radius "r", // from time "t0" until time "t1", updated every "period" µs //
with expiration time of "expiry" µs. Temperature k(Region(Coordinates(x, y, z), r, t0, t1), expiry,
period); for(Time t = TSTP::now(); t < t1; t = TSTP::now()) { cout << "The temperature there is "

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Observer
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData

https://epos.lisha.ufsc.br/ 14/01/2026 44

4.7. Utilities
EPOS provides a set of Utility Classes that can be used for both application and system
development. Although of far more limited scope, programmers can take them as EPOS counterpart
to libc and libstdc++.

4.7.1. Containers
Operating systems spend most of their CPU time managing lists. Processes, resources, buffers, and
virtually any other object in the system are kept in and moved across lists. Therefore, EPOS Lists
have been carefully designed for efficiency. Although similar to the C++ Standard Library Lists, they
have a key difference: objects subject to list insertion and removal must contain a linkage data
structure (viz. Element) within themselves. In this way, EPOS Lists do not waste time with memory
allocation and deallocation of such operations. Objects must be aware of how many lists can contain
them at the same time and declared the necessary number of linkage data structures.

EPOS provides the following containers: Vector, List, Hash Table, Queue, Bitmap, and Zero-Copy
Buffers. They are build atop 4 basic types of Lists, each implemented both as a single-linked and as
double-linked. Single-linked Lists are prefixed with Simple_. Singly-linked lists require less memory,
but depend on sequential search operations. Doubly-linked ones require more memory, but support
removal (and other operations) from arbitrary positions. The four basic types are: ordinary, ordered,
relatively ordered, and grouping.

Ordered containers are kept ordered by a Rank. Types acting as Rank must either declare operator
int() or declare the full set of logic operators. Relatively ordered containers are also kept ordered
by Rank, but ranks are interpreted as offsets from/to neighboring elements. Operations ensure that
such relative ranks are properly adjusted whenever an element is inserted into or removed from a
relatively ordered container. EPOS also provides a Grouping container that implements the Buddy
algorithm. It is mostly used to implement memory allocators.

Besides basic containers, EPOS also provides a powerful Scheduling List framework.

4.7.1.1. Linkage Elements and Ranks

Header
include/utility/list.h

Interface

<< k << "K." << endl; Delay(period); }



class List_Element_Rank { public: List_Element_Rank(int r = 0); operator int(); }; namespace
List_Elements { typedef List_Element_Rank Rank; // Vector Element template<typename T> class
Pointer { public: typedef T Object_Type; typedef Pointer Element; public: Pointer(const T * o); T *
object(); }; // Hash Table Element template<typename T, typename R = Rank> class Ranked {
public: typedef T Object_Type; typedef R Rank_Type; typedef Ranked Element; public:
Ranked(const T * o, const R & r = 0); T * object(); const R & rank(); const R & key(); void
rank(const R & r); int promote(const R & n = 1) ; int demote(const R & n = 1); }; // Simple List
Element template<typename T> class Singly_Linked { public: typedef T Object_Type; typedef
Singly_Linked Element; public: Singly_Linked(const T * o); T * object(); Element * next(); void
next(Element * e); }; // Simple Ordered List Element // Hash Table's Synonym List Element
template<typename T, typename R = Rank> class Singly_Linked_Ordered { public: typedef T
Object_Type; typedef Rank Rank_Type; typedef Singly_Linked_Ordered Element; public:

https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Buddy_memory_allocation

https://epos.lisha.ufsc.br/ 14/01/2026 45

Types

List_Element_Rank
The basic Rank type for ordered containers. It declares a constructor and operator int() to
become interoperable with the native C++ type. Customized rank types can either follow this
approach or must define the full set of logic operators for sorting operations.

Linkage Elements
template<typename T>
class Pointer
Linkage Element for Vector.

template<typename T, typename R = Rank>
class Ranked
Linkage Element for Hash.

template<typename T, typename R = Rank>
class Singly_Linked_Ordered
Linkage Element for Simple_Ordered_List. It is also used as element in Hash Table's
synonyms list.

template<typename T>
class Singly_Linked_Grouping
Linkage Element for Simple_Grouping_List.

template<typename T>
class Doubly_Linked
Linkage Element for List.

Singly_Linked_Ordered(const T * o, const R & r = 0); T * object() const ; Element * next(); void
next(Element * e); const R & rank(); const R & key(); void rank(const R & r); int promote(const R
& n = 1); int demote(const R & n = 1); }; // Simple Grouping List Element template<typename
T> class Singly_Linked_Grouping { public: typedef T Object_Type; typedef
Singly_Linked_Grouping Element; public: Singly_Linked_Grouping(const T * o, int s); T * object();
Element * next(); void next(Element * e); unsigned int size(); void size(unsigned int l); void
shrink(unsigned int n); void expand(unsigned int n); }; // List Element template<typename T>
class Doubly_Linked { public: typedef T Object_Type; typedef Doubly_Linked Element; public:
Doubly_Linked(const T * o); T * object(); Element * prev(); Element * next(); void prev(Element *
e); void next(Element * e); }; // Ordered List Element template<typename T, typename R =
Rank> class Doubly_Linked_Ordered { public: typedef T Object_Type; typedef Rank Rank_Type;
typedef Doubly_Linked_Ordered Element; public: Doubly_Linked_Ordered(const T * o, const R & r
= 0); T * object(); Element * prev(); Element * next(); void prev(Element * e); void next(Element *
e); const R & rank(); void rank(const R & r); int promote(const R & n = 1); int demote(const R & n
= 1); }; // Scheduling List Element template<typename T, typename R = Rank> class
Doubly_Linked_Scheduling { public: typedef T Object_Type; typedef Rank Rank_Type; typedef
Doubly_Linked_Scheduling Element; public: Doubly_Linked_Scheduling(const T * o, const R & r =
0); T * object(); Element * prev(); Element * next(); void prev(Element * e); void next(Element * e);
const R & rank(); void rank(const R & r); int promote(const R & n = 1); int demote(const R & n =
1); }; // Grouping List Element template<typename T> class Doubly_Linked_Grouping { public:
typedef T Object_Type; typedef Doubly_Linked_Grouping Element; public:
Doubly_Linked_Grouping(const T * o, int s); T * object(); Element * prev(); Element * next(); void
prev(Element * e); void next(Element * e); unsigned int size(); void size(unsigned int l); void
shrink(unsigned int n); void expand(unsigned int n); }; };

https://epos.lisha.ufsc.br/ 14/01/2026 46

template<typename T, typename R = Rank>
class Doubly_Linked_Ordered
Linkage Element for Ordered_List.

template<typename T>
class Doubly_Linked_Grouping
Linkage Element for Grouping_List.

template<typename T, typename R = Rank>
class Doubly_Linked_Scheduling
Linkage Element for Scheduling_List.
Common Type Exports

Object_Type
An alias for the type of the object associated with the Element.
Rank_Type
An alias for the type of the Rank of the object associated with the Element. It is only
defined for Ordered containers.
Element
An alias for the type of the Element.

Methods

T * object()
Returns a pointer to the object associated with the Element.

Element * prev()
Returns a pointer to the previous Element linked with the Element or 0 if it is the Head. It is
only defined for doubly-linked containers.

void prev(Element * e)
Sets the previous link in the Element to e. It is only defined for doubly-linked containers.

Element * next()
Returns a pointer to the next Element linked with the Element or 0 if it is the Tail.

void next(Element * e)
Sets the next link in the Element to e.

const R & rank()
For ordered containers, returns the Element's Rank.

void rank(const R & r)
For ordered containers, sets the Element's Rank. It does not reorder the container, though. This
method is meant to be called by the sorting algorithms during reordering.

int promote(const R & n = 1)
For ordered containers, increments the Element's Rank by n. It does not reorder the container,
though. This method is meant to be called by the sorting algorithms during reordering.

int demote(const R & n = 1)
For ordered containers, decrements the Element's Rank by n. It does not reorder the container,
though. This method is meant to be called by the sorting algorithms during reordering.

unsigned int size()

https://epos.lisha.ufsc.br/ 14/01/2026 47

Only defined for Grouping Lists, returns the size of the resource set associated with the
Element.

void size(unsigned int l)
Only defined for Grouping Lists, sets the size of the resource set associated with the Element.

void shrink(unsigned int n)
Only defined for Grouping Lists, decrements the size of the resource set associated with the
Element by n.

void expand(unsigned int n)
Only defined for Grouping Lists, increments the size of the resource set associated with the
Element by n.

4.7.1.2. Iterators

The following Iterators are common to all EPOS containers. They can be used mostly like those in
the C++ Standard Library.

Header
include/utility/list.h

Interface

Types

Forward
An Iterator for singly-linked containers.

Forward
An Iterator for doubly-linked containers.

4.7.1.3. Vector

EPOS provides a Vector container similar to that in the C++ Standard Library.

Header
include/utility/vector.h

Interface



namespace List_Iterators { // Forward Iterator (for singly linked lists) template<typename El>
class Forward { public: typedef El Element; public: Forward(); Forward(Element * e); operator
Element *(); Element & operator*(); Element * operator->(); Iterator & operator++(); Iterator
operator++(int); bool operator==(const Iterator & i); bool operator!=(const Iterator & i); }; //
Bidirectional Iterator (for doubly linked lists) template<typename El> class Bidirecional { public:
typedef El Element; public: Bidirecional(); Bidirecional(Element * e); operator Element *();
Element & operator*(); Element * operator->(); Iterator & operator++(); Iterator
operator++(int); Iterator & operator--(); Iterator operator--(int) bool operator==(const Iterator &
i); bool operator!=(const Iterator & i); }; }



template<typename T, unsigned int SIZE, typename El = List_Elements::Pointer<T> > class

https://epos.lisha.ufsc.br/ 14/01/2026 48

Methods

Vector()
Creates a vector.

bool empty()
Returns true if the vector is empty and false otherwise.

unsigned int size()
Returns the number of elements in the vector.

Element * get(int i)
Returns a pointer to the element stored at position i in the vector.

bool insert(Element * e, unsigned int i)
Inserts element e in the vector at position i. If the position was already occupied, returns false.
Otherwise, returns true.

Element * remove(unsigned int i)
Removes the element at position "i" and returns this element. It returns 0 if the position "i" is
invalid.

Element * remove(Element * e)
Removes element e from the vector and returns a pointer to it, or returns 0 if the element is not
in the vector.

Element * remove(const Object_Type * obj)
Searches the vector for an element containing the object pointed by obj. If found, removes that
element from the vector and returns a pointer to it, otherwise it returns 0.

Element * search(const Object_Type * obj)
Searches the vector for an element containing the object pointed by obj. If found, returns a
pointer to it, otherwise returns 0.

Examples

4.7.1.4. Lists

EPOS provides 9 implementations of list: ordinary, ordered, relatively ordered, grouping, and
scheduling. The first 4 are provided both as singly-linked and as doubly-linked. The scheduling list is
only provided as doubly-linked. Singly-linked lists are prefixed with Simple_, define a Forward
Iterator and by default use a Singly_Linkedlinkage element. Ordered lists are kept ordered by a
Rank. Relatively ordered list elements have their ranks interpreted as offsets from/to neighboring
elements. Operations ensure that such relative ranks are properly adjusted whenever an element is
inserted into or removed from a relatively ordered container. Grouping lists implement the Buddy
algorithm and are mostly used to implement memory allocators.

Vector { public: typedef T Object_Type; typedef El Element; public: Vector(); bool empty();
unsigned int size(); Element * operator[](unsigned int i); bool insert(Element * e, unsigned int i);
Element * remove(unsigned int i); Element * remove(Element * e); Element * remove(const
Object_Type * obj); Element * search(const Object_Type * obj) ; };



https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://en.wikipedia.org/wiki/Buddy_memory_allocation

https://epos.lisha.ufsc.br/ 14/01/2026 49

Header
include/utility/list.h

Interface

Types

template<typename T, typename El>
List
A doubly-linked List of objects to type T, which are linked using El.

template<typename T, typename R, typename El>
Ordered_List
A doubly-linked Ordered List of objects of type T, which are ranked by R and linked using El.

template<typename T, typename R, typename El>
Relative_List
A doubly-linked Relatively Ordered List of objects of type T, which are ranked by R and linked
using El.



template<typename T, typename El = List_Elements::Doubly_Linked<T> > class List { public:
typedef T Object_Type; typedef El Element; typedef List_Iterators::Bidirecional<El> Iterator;
public: List(); bool empty(); unsigned int size(); Element * head(); Element * tail(); Iterator
begin(); Iterator end(); void insert(Element * e) ; void insert_head(Element * e); void
insert_tail(Element * e); Element * remove(); Element * remove(Element * e); Element *
remove_head(); Element * remove_tail(); Element * remove(const Object_Type * obj); Element *
search(const Object_Type * obj); }; template<typename T, typename R = List_Element_Rank,
typename El = List_Elements::Doubly_Linked_Ordered<T, R>, bool relative = false> class
Ordered_List: public List<T, El> { public: typedef T Object_Type; typedef R Rank_Type; typedef
El Element; typedef List_Iterators::Bidirecional<El> Iterator; public: Ordered_List(); using
Base::empty; using Base::size; using Base::head; using Base::tail; using Base::begin; using
Base::end; void insert(Element * e); Element * remove(); Element * remove(Element * e); using
Base::remove_head; using Base::remove_tail; Element * remove(const Object_Type * obj);
Element * remove_rank(const Rank_Type & rank) ; using Base::search; Element *
search_rank(const Rank_Type & rank); }; template<typename T, typename R =
List_Element_Rank, typename El = List_Elements::Doubly_Linked_Ordered<T, R> > class
Simple_Relative_List: public Ordered_List<T, R, El, true> {}; template<typename T, typename El
= List_Elements::Doubly_Linked_Ordered<T> > class Grouping_List: public List<T, El> { public:
typedef T Object_Type; typedef El Element; typedef List_Iterators::Bidirecional<El> Iterator;
public: Grouping_List(); using Base::empty; using Base::size; using Base::head; using Base::tail;
using Base::begin; using Base::end; unsigned int grouped_size(); void insert_merging(Element * e,
Element ** m1, Element ** m2); Element * search_size(unsigned int s); Element *
search_left(const Object_Type * obj) ; Element * search_decrementing(unsigned int s) ; };
template<typename T, typename R = typename T::Criterion, typename El =
List_Elements::Doubly_Linked_Scheduling<T, R> > class Scheduling_List: private
Ordered_List<T, R, El> { public: typedef T Object_Type; typedef R Rank_Type; typedef El
Element; typedef typename Base::Iterator Iterator; public: Scheduling_List(); using Base::empty;
using Base::size; using Base::head; using Base::tail; using Base::begin; using Base::end; Element *
volatile & chosen(); void insert(Element * e) ; Element * remove(Element * e); Element * choose()
; Element * choose_another(); Element * choose(Element * e) ; };

https://epos.lisha.ufsc.br/ 14/01/2026 50

template<typename T, typename El>
Grouping_List
A doubly-linked Grouping (Buddy) List of objects to type T, which are linked using El.

template<typename T, typename R, typename El>
Scheduling_List
A doubly-linked Scheduling List of objects of type T, which are ranked by R and linked using El.
Objects subject to scheduling must export a type +-Criterion+- compatible with those described
in section Scheduler.

template<typename T, typename El>
Simple_List
A singly-linked List of objects to type T, which are linked using El.

template<typename T, typename R, typename El>
Simple_Ordered_List
A singly-linked Ordered List of objects of type T, which are ranked by R and linked using El.

template<typename T, typename R, typename El>
Simple_Relative_List
A singly-linked Relatively Ordered List of objects of type T, which are ranked by R and linked
using El.

template<typename T, typename El>
Simple_Grouping_List
A singly-linked Grouping (Buddy) List of objects to type T, which are linked using El.

Common Type Exports
Object_Type
An alias for the type of the objects stored in the container.
Rank_Type
An alias for the type of the Rank of the objects stored in the container. It is only defined for
Ordered containers.
Element
An alias for the container's Element.
Iterator
An alias for the container's Iterator.

Methods

List()
Ordered_List()
Relative_List()
Grouping_List()
Scheduling_List()
Simple_List()
Simple_Ordered_List()
Simple_Relative_List()
Simple_Grouping_List()
Creates a list.

bool empty()
Returns true if the list is empty and false otherwise.

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler

https://epos.lisha.ufsc.br/ 14/01/2026 51

unsigned int size()
Returns the number of elements in the list.

Element * head()
Returns the first element of the list.

Element * tail()
Returns the last element of the list.

Iterator begin()
Returns an iterator to the first element of the list.

Iterator end()
Returns an iterator to the last element of the list.

void insert(Element * e)
Inserts element e in the list. For unordered lists, insertion is performed at the tail. For ordered
lists, the position is determined by e->rank(). The method is not defined for grouping lists.

void insert_head(Element * e)
Inserts element e in the list's head. It is not defined for ordered and grouping lists.

void insert_tail(Element * e)
Inserts element e in the list's tail. It is not defined for ordered and grouping lists.

Element * remove()
Removes the element at the list's head and returns a pointer to it. If the list is empty, returns 0.
It is not defined for grouping lists.

Element * remove(Element * e)
Removes element e from the list and returns a pointer to it. For relatively ordered lists, the
ranks of neighbor elements are adjusted accordingly.
Note: removing an Element that is not in the list with this method will probably corrupt the last
container it was on. This is a fast method to be used inside the OS. Applications will more likely
use Element * remove(const Object_Type * obj).

Element * remove_head()
Removes the element at the list's head and returns a pointer to it. If the list is empty, returns 0.
It is not defined for grouping lists.

Element * remove_tail()
Removes the element at the list's tail and returns a pointer to it. If the list is empty, returns 0. It
is not defined for grouping lists.

Element * remove(const Object_Type * obj)
Searches the list for an element containing the object pointed by obj. If found, removes that
element from the list and returns a pointer to it, otherwise returns 0. For relatively ordered
lists, the ranks of neighbor elements are adjusted accordingly.
Note: trying to remove an object that is not in the list with this method is harmless; 0 is
returned in this case.

Element * remove_rank(int rank)
Searches the list for the first element whose rank is rank. If found, removes that element from
the list and returns a pointer to it, otherwise returns 0. For relatively ordered lists, the ranks of

https://epos.lisha.ufsc.br/ 14/01/2026 52

neighbor elements are adjusted accordingly.
Note: trying to remove an object that is not in the list with this method is harmless; 0 is
returned in this case.

Element * search(const Object_Type * obj)
Searches the list for an element containing the object pointed by obj. If found, returns a pointer
to it, otherwise returns 0.

Element * search_rank(int rank)
Returns a pointer to the first element in the list whose rank is rank or 0 if there is no element in
the list with that rank. This method is only defined for ordered lists.

unsigned int grouped_size()
For grouping lists, returns the sum of all the resource sets stored in the list, that is, the sum of
the return value of method size() applied to each element in the grouping list. This method is
not defined for other kinds of list.

Element * search_size(unsigned int s)
For grouping lists, searches for the first element in the list whose size is equal to or larger than
s. If found, returns a pointer to it, otherwise returns 0. This method is not defined for other
kinds of list.

void insert_merging(Element * e, Element ** m1, Element ** m2)
Inserts element e in the grouping list. If the insertion does not cause mergers, then output
parameters m1 and m2 are set to 0. Conversely, if the insertion causes a merger with an adjacent
element, that element is removed from the list and its size is incorporated by e. On the
adjacency with a preceding element (i.e. an element whose object pointer is less than
e->object()) , -+m1 is updated with a pointer to that element and the object pointer in the
element being inserted is adjusted accordingly (-+e->object(m1->object())+-). On the adjacency
with a following element, m2 is updated with a pointer to that element. This method is not
defined for other kinds of list.
Note: if m1 and m2 were dynamically allocated somewhere else, deleting them is up to who
allocated them.

Element * search_decrementing(unsigned int s)
For grouping lists, searches for the first element in the list whose size is equal to or larger than
s. If found, returns a pointer to it and decrements its size by s, otherwise returns 0. This
method is not defined for other kinds of list.
Note: for performance reasons, this method uses first-fit, while the traditional Buddy Allocator
uses best-fit.

Element * volatile & chosen()
For scheduling lists, returns a reference to a volatile pointer to the element currently chosen.
This method is not defined for other kinds of list.

Element * choose()
For scheduling lists, applies the Criterion in force (see Scheduler) to select an element that
will figure as the new chosen and returns a pointer to that element. This method is not defined
for other kinds of list.

Element * choose_another()
For scheduling lists, applies the Criterion in force (see Scheduler) to select an element that
will figure as the new chosen and returns a pointer to that element. The element currently

https://en.wikipedia.org/wiki/Buddy_memory_allocation
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler

https://epos.lisha.ufsc.br/ 14/01/2026 53

chosen is excluded from the selection, so even if the criteria would elect it, another element will
be returned. This method is not defined for other kinds of list.

Element * choose(Element * e)
For scheduling lists, ignores the Criterion in force (see Scheduler) and select e as the new
chosen. The method returns a pointer to the new chosen element (most likely e). This method is
not defined for other kinds of list.

4.7.1.5. Queue

A Queue is just a wrapper to a List that is able to make the operation on that List atomic through
the use of a Spin Lock. Its interface is that of a Scheduling_List.
Examples

4.7.1.6. Hash

EPOS provides two implementations of Hast Tables. The first, Simple Hash, handles collisions by
putting all synonyms in the same singly-linked ordered list. That is, it is implemented with a Vector
plus a List of synonyms. The second, named just Hash, handles collisions by putting synonyms on
separate lists, one for each Key. It is implemented as a Vector of Lists. The type used as Key is
required to implement operator%().

Header
include/hash.h

Interface

Methods

Hash()
Simple_Hash()
Creates a hash table.

Iterator begin()
Returns an iterator to the first element in the hash table.

Iterator end()





template<typename T, unsigned int SIZE, typename Key = int> class Simple_Hash { public:
typedef T Object_Type; typedef Key Rank_Type; typedef typename
List_Elements::Singly_Linked_Ordered<T, Key> Element; class Forward; typedef Forward
Iterator; public: Simple_Hash(); Iterator begin(); Iterator end(); bool empty(); unsigned int size();
void insert(Element * e) ; Element * remove(Element * e); Element * remove(const Object_Type *
obj); Element * remove_key(const Key & key); Element * search(const Object_Type * obj) ;
Element * search_key(const Key & key); }; template<typename T, unsigned int SIZE, typename
Key = int, typename El = List_Elements::Singly_Linked_Ordered<T, Key>, typename L =
Simple_Ordered_List<T, Key, El> > class Hash { public: typedef T Object_Type; typedef El
Element; typedef L List; public: Hash(); Iterator begin(); Iterator end(); bool empty(); unsigned int
size(); void insert(Element * e) ; Element * remove(Element * e) ; Element * remove(const
Object_Type * obj); Element * remove_key(const Key & key); Element * search(const Object_Type
* obj); Element * search_key(const Key & key); List * operator[](const Key & key) ; };

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Scheduler
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Spin%20Lock

https://epos.lisha.ufsc.br/ 14/01/2026 54

Returns an iterator to the last element in the hash table.

bool empty()
Returns true if the hash table is empty and false otherwise.

unsigned int size()
Returns the number of elements in the hash table.

void insert(Element * e)
Inserts element e in the hash table.

Element * remove(Element * e)
Removes element e from the hash table and returns a pointer to it.
Note: removing an Element that is not in the table with this method will probably corrupt the
last container it was on. This is a fast method to be used inside the OS. Applications will more
likely use Element * remove(const Object_Type * obj).

Element * remove(const Object_Type * obj)
Searches the hash table for an element containing the object pointed by obj. If found, removes
that element from the table and returns a pointer to it, otherwise returns 0.
Note: trying to remove an object that is not in the list with this method is harmless; 0 is
returned in this case.

Element * remove_key(const Key & key)
Searches the hash table for the first element whose key is key. If found, removes that element
from the table and returns a pointer to it, otherwise returns 0.
Note: trying to remove an object that is not in the table with this method is harmless; 0 is
returned in this case.

Element * search(const Object_Type * obj)
Searches the hash table for an element containing the object pointed by obj. If found, returns a
pointer to it, otherwise returns 0.

Element * search_key(const Key & key)
Returns a pointer to the first element in the hash table whose key is key or 0 if there is no
element in the table by that key.

Examples

4.7.2. OStream
EPOS provides an Output Stream similar to that in the C++ Standard Library. Applications can print
formatted data on the standard output stream using operator<<().

Header
include/utility/ostream.h

Interface





class OStream { public: struct Begl {}; struct Endl {}; struct Hex {}; struct Dec {}; struct Oct

https://epos.lisha.ufsc.br/ 14/01/2026 55

Types

Begl
Marks the beginning of a segment of the stream (ended by Endl) that is to be atomically output
on multicore configurations.

Endl
Encapsulates a \n delimiter besides marking the end of a segment of the stream (started by
Begl) that is to be atomically output on multicore configurations.

Hex
Selects hexadecimal mode for the output of integer numbers.

Dec
Selects decimal mode for the output of integer numbers.

Oct
Selects octal mode for the output of integer numbers.

Bin
Selects binary mode for the output of integer numbers.

Err
Signalizes an error to the operating system. Besides producing a log message, usually causes a
Thread abort.

Methods

OStream()
Creates an OStream object.

OStream & operator<<(...)
Converts the argument to a string and pushes it into the stream.

Examples

4.7.3. Random
EPOS provides a Pseudorandom Number Generator based on the linear congruential generator.
Whenever the machine features devices that can be used to produce enough entropy, such as ADC

{}; struct Bin {}; struct Err {}; public: OStream(); OStream & operator<<(const Begl & begl);
OStream & operator<<(const Endl & endl); OStream & operator<<(const Hex & hex); OStream
& operator<<(const Dec & dec); OStream & operator<<(const Oct & oct); OStream &
operator<<(const Bin & bin); OStream & operator<<(const Err & err); OStream &
operator<<(char c); OStream & operator<<(unsigned char c); OStream & operator<<(int i);
OStream & operator<<(short s); OStream & operator<<(long l); OStream &
operator<<(unsigned int u); OStream & operator<<(unsigned short s); OStream &
operator<<(unsigned long l); OStream & operator<<(long long int u); OStream &
operator<<(unsigned long long int u); OStream & operator<<(const void * p); OStream &
operator<<(const char * s); OStream & operator<<(float f); }; extern OStream::Begl begl; extern
OStream::Endl endl; extern OStream::Hex hex; extern OStream::Dec dec; extern OStream::Oct
oct; extern OStream::Bin bin;



https://en.wikipedia.org/wiki/Random_number_generation

https://epos.lisha.ufsc.br/ 14/01/2026 56

converters and RF transceivers, the algorithm is fed with a really random seed and therefore
becomes a true Random Number Generator.

Header
include/utility/random.h

Interface

Methods

int random()
Returns a random (or pseudo-random) integral number.

Examples

4.7.4. CRC
EPOS provides Cyclic Redundancy Check (CRC) functions to calculate check of 8, 16, 32, and 64
bits.

Header
include/utility/crc.h

Interface

Methods

unsigned short crc8(char * ptr, int size)
Calculates the CRC8 of the data given by (ptr+, -+size).

unsigned short crc16(char * ptr, int size)
Calculates the CRC16 of the data given by (ptr+, -+size).

unsigned short crc32(char * ptr, int size)
Calculates the CRC32 of the data given by (ptr+, -+size).

unsigned short crc64(char * ptr, int size)
Calculates the CRC64 of the data given by (ptr+, -+size).

Examples



class Random { public: static int random(); };





class CRC { public: static unsigned char crc8(char * ptr, int size); static unsigned short
crc16(char * ptr, int size); static unsigned long crc32(char * ptr, int size); static unsigned long
long crc64(char * ptr, int size); };



https://en.wikipedia.org/wiki/Cyclic_redundancy_check

https://epos.lisha.ufsc.br/ 14/01/2026 57

4.7.5. Spinlock
EPOS provides Spinlocks for busy waiting synchronization. This utility is meant to be used inside the
system. Applications are more likely to use Synchronization abstractions.

Header
include/utility/spin.h

Interface

Methods

Spin()
Creates a Spinlock.

void acquire()
Spins in a busy waiting loop until the Spinlock gets available, atomically acquiring it.

void release()
Releases the Spinlock.

Examples

4.7.6. Observer
EPOS provides a set of implementations for the Observer design pattern. Observers can be attached
to Observed objects to get notification about changes in its state through invocations of update().

4.7.6.1. Observer/Observed

This is the traditional design pattern.

Header
include/utility/observer.h

Interface

Methods

Observed()
Creates an Observed object.

~Observed()
Destroys an Observed object, detaching all Observers.

void attach(Observer * o)



class Spin { public: Spin(); void acquire(); void release(); };





class Observer; class Observed { public: Observed(); ~Observed(); virtual void attach(Observer *
o); virtual void detach(Observer * o); virtual bool notify(); }; class Observer { protected:
Observer(); public: ~Observer(); virtual void update(Observed * o) = 0; };

https://en.wikipedia.org/wiki/Spinlock
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Process_Coordination_Synchronizers_
https://en.wikipedia.org/wiki/Observer_pattern

https://epos.lisha.ufsc.br/ 14/01/2026 58

Attaches Observer o to get notifications about this Observed object.

void detach(Observer * o)
Detaches Observer o from this Observed object, so it won't get notified anymore.

void notify()
Notifies all attached Observers, calling their update() method.

Observer()
Creates an Observer object.

~Observer()
Destroys an Observer object.

void update(Observed * o)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o.

4.7.6.2. Conditional Observer x Conditionally Observed

This utility is similar to the traditional design pattern, but Conditional Observers are only notified
about Conditionally Observed objects matching a given condition.

Header
include/utility/observer.h

Interface

Methods

Conditionally_Observed()
Creates a Conditionally Observed object.

~Conditionally_Observed()
Destroys a Conditionally Observed object.

void attach(Conditional_Observer<T> * o, T c)
Attaches Observer o to get notifications about this Observed object whenever the condition c
matches.

void detach(Conditional_Observer<T> * o, T c)
Detaches Observer o from this Observed object on condition c.

void notify(T c)
Notifies all Observers attached on condition c, calling their update() method.



template<typename T = int> class Conditional_Observer; template<typename T = int> class
Conditionally_Observed { public: typedef T Observing_Condition; public:
Conditionally_Observed(); ~Conditionally_Observed(); virtual void
attach(Conditional_Observer<T> * o, T c); virtual void detach(Conditional_Observer<T> * o, T c);
virtual bool notify(T c); }; template<typename T> class Conditional_Observer { public: typedef T
Observing_Condition; protected: Conditional_Observer(); public: ~Conditional_Observer(); virtual
void update(Conditionally_Observed<T> * o, T c) = 0; };

https://epos.lisha.ufsc.br/ 14/01/2026 59

Conditional_Observer()
Creates a Conditional Observer object.

~Conditional_Observer()
Destroys a Conditional Observer object.

void update(Conditionally_Observed<T> * o, T c)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o whenever c matches.

4.7.6.3. Unconditional Observer x Unconditionally Observed with Data

This utility is similar to the traditional design pattern, but Observers get a pointer to data from
''Observed' objects at each notification.

Header
include/utility/observer.h

Interface

Methods

Data_Observed()
Creates an Observed object.

~Data_Observed()
Destroys an Observed object, detaching all Observers.

void attach(Data_Observer<T1, void> * o)
Attaches Observer o to get notifications about this Observed object.

void detach(Data_Observer<T1, void> * o)
Detaches Observer o from this Observed object, so it won't get notified anymore.

void notify(T1 * d)
Notifies all attached Observers, calling their update(T1 * d) method passing a pointer to the
piece of data within the Observed object.

Data_Observer()
Creates an Observer object.

~Data_Observer()
Destroys an Observer object.

void update(Data_Observed<T1, void> * o, T1 * d)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o. A pointer to the piece of data within the Observed object is



template<typename T1> class Data_Observed<T1, void> { public: typedef T1 Observed_Data;
public: Data_Observed(); ~Data_Observed(); virtual void attach(Data_Observer<T1, void> * o);
virtual void detach(Data_Observer<T1, void> * o); virtual bool notify(T1 * d) ; };
template<typename T1> class Data_Observer<T1, void> { public: typedef T1 Observed_Data;
protected: Data_Observer(); public: ~Data_Observer(); virtual void update(Data_Observed<T1,
void> * o, T1 * d) = 0; };

https://epos.lisha.ufsc.br/ 14/01/2026 60

passed through d.

4.7.6.4. Conditional Observer x Conditionally Observed with Data

This utility combines the Conditional and Data Observer patterns. Observers get a pointer to data
from ''Observed' objects whenever a condition is matched.

Header
include/utility/observer.h

Interface

Methods

Data_Observed()
Creates an Observed object.

~Data_Observed()
Destroys an Observed object, detaching all Observers.

void attach(Data_Observer<T1, T2> * o, T2 c)
Attaches Observer o to get notifications about this Observed object whenever c matches.

void detach(Data_Observer<T1, T2> * o, T2 c)
Detaches Observer o from this Observed object on condition c.

void notify(T2 c, T1 * d)
Notifies all Observers attached on condition c, calling their update(Data_Observed<T1, T2> *
o, T2 c, T1 * d) method passing a pointer to the piece of data within the Observed object
through d.

Data_Observer()
Creates an Observer object.

~Data_Observer()
Destroys an Observer object.

-+void update(Data_Observed<T1, T2> * o, T2 c, T1 * d)
This pure virtual method must be implemented by the Observer to get notifications about
changes to an Observed object o whenever c matches. A pointer to the piece of data within the
Observed object is passed through d.

Examples



template<typename T1, typename T2 = void> class Data_Observer; template<typename T1,
typename T2 = void> class Data_Observed { public: typedef T1 Observed_Data; typedef T2
Observing_Condition; public: Data_Observed(); ~Data_Observed(); virtual void
attach(Data_Observer<T1, T2> * o, T2 c); virtual void detach(Data_Observer<T1, T2> * o, T2 c);
virtual bool notify(T2 c, T1 * d); }; template<typename T1, typename T2> class Data_Observer {
public: typedef T1 Observed_Data; typedef T2 Observing_Condition; protected: Data_Observer();
public: ~Data_Observer(); virtual void update(Data_Observed<T1, T2> * o, T2 c, T1 * d) = 0; };



https://epos.lisha.ufsc.br/ 14/01/2026 61

4.7.7. Handler

EPOS allows application processes to handle events at user-level through the Handler family of
abstractions. Handlers can be time-triggered by Alarm or event-driven by interrupts. It is important
to notice that Semaphore is the only handler with memory, so delayed events are not lost. Therefore,
it is the right option for most of the events handled at user-level.

Header
include/utility/handler.h

Interface

Methods

Function_Handler(Function * h)
Functor_Handler(Functor * h, T * o)
Thread_Handler(Thread * h)
Semaphore_Handler(Semaphore * h)
Mutex_Handler(Mutex * h)
Condition_Handler(Condition * h)
Creates a handler on object h.

~Function_Handler()
~Functor_Handler()
~Thread_Handler()
~Semaphore_Handler()
~Mutex_Handler()
~Condition_Handler()
Destroys the handler.

void operator()()
The call operator is used to invoke the Handler. As a pure virtual method in the base class, it
must be defined for each kind of Handler.

For Function_Handler, it calls the function given by h.
For Functor_Handler, it calls the functor h on object o.
For Thread_Handler, it calls resume() on the Thread given by h.
For Semaphore_Handler, it calls v() on the Semaphore given by h.
For Mutex_Handler, it calls unlock() on the Mutex given by h.
For Condition_Handler, it calls signal() on the Condition Variable given by h.



class Handler { public: typedef void (Function)(); public: Handler(); virtual ~Handler(); virtual
void operator()() = 0; }; class Function_Handler: public Handler { public:
Function_Handler(Function * h); ~Function_Handler(); void operator()(); // h(); };
template<typename T> class Functor_Handler: public Handler { public: typedef void (Functor)(T
*); Functor_Handler(Functor * h, T * o); ~Functor_Handler(); void operator()(); // h(o); }; class
Thread_Handler : public Handler { public: Thread_Handler(Thread * h); ~Thread_Handler(); void
operator()(); // h->resume(); }; class Semaphore_Handler: public Handler { public:
Semaphore_Handler(Semaphore * h); ~Semaphore_Handler(); void operator()(); // h->v(); }; class
Mutex_Handler: public Handler { public: Mutex_Handler(Mutex * h); ~Mutex_Handler(); void
operator()(); // h->unlock(); }; class Condition_Handler: public Handler { public:
Condition_Handler(Condition * h); ~Condition_Handler(); void operator()(); // h->signal(); };

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Alarm

https://epos.lisha.ufsc.br/ 14/01/2026 62

Examples

4.7.8. Buffer (Zero-Copy)
Header
include/utility/buffer.h

Interface

Methods

Examples

4.8. Hardware Mediators
4.8.1. CPU

The CPU mediator is responsible for abstracting types and behavior of CPU components.

Generic implementations of CPU interface are provided by CPU_Common. Architecture-specifc
implementations are provided by each architecture's CPU mediator (e.g., IA32_CPU, AVR8_CPU,
etc).

The CPU mediator also defines two important types (Log_Addr and Phy_Addr) to abstract,
respectively, logical and physical addresses. Such types, being classes, also implements a set of
constructors and operators to enable proper handling of such abstractions.

Below is a class diagram for this interface.





template<typename Owner, typename Data, typename Shadow = void, typename Metadata =
Dummy> class Buffer: private Data, public Metadata { public: typedef
Simple_List<Buffer<Owner, Data, Shadow, Metadata> > List; typedef typename List::Element
Element; public: Buffer(Shadow * s); Buffer(Owner * o, unsigned int s); template<typename ...
Tn> Buffer(Owner * o, unsigned int s, Tn ... an); Data * data(); Data * frame(); Data * message();
bool lock(); void unlock(); Owner * owner() const; Owner * nic() const; void owner(Owner * o);
void nic(Owner * o); Shadow * shadow() const; Shadow * back() const; unsigned int size() const;
void size(unsigned int s); Element * link1(); Element * link(); Element * lint(); Element * link2();
Element * lext(); friend Debug & operator<<(Debug & db, const Buffer & b); };



https://epos.lisha.ufsc.br/ 14/01/2026 63

Methods

static void halt()
This function is reimplemented in the CPU mediators of architectures providing better ways to
halt a CPU. A basic implementation in CPU_Common halts the processor by entering a perpetual
loop (for(;;);).

Note: this default implementation is a "no return" point. Specific implementations should rely in
hardware resources such as sleep modes to allow the system to come back from a halt.

static bool tsl(volatile bool & lock)
This function is reimplemented in the CPU mediators of architectures providing better ways to
guarantee an atomic register value change. A basic implementation in CPU_Common uses C
code to change a boolean value, which is not guaranteed to be atomic.

static int finc(volatile int & number)
This function is reimplemented in the CPU mediators of architectures providing better ways to
guarantee an atomic register value increment. A basic implementation in CPU_Common uses C
code to increment an integer value, which is not guaranteed to be atomic.

static int fdec(volatile int & number)
This function is reimplemented in the CPU mediators of architectures providing better ways to
guarantee an atomic register value decrement. A basic implementation in CPU_Common uses C
code to decrement an integer value, which is not guaranteed to be atomic.

4.8.2. MMU
The MMU is a hardware mediator responsible for abstracting memory management and memory
protection from the hardware. It's generally abstract the Memory Management Unit (MMU) of the
target architecture, or provide a software implementation for this functions. The class diagram
below shows the hierarchy of the low level memory abstractions.

More information can be found in EPOS Developer's Guide.

4.8.3. TSC

The Time Stamp Counter (TSC) is responsible for counting CPU ticks. If a given platform does not
feature a hardware TSC, its functionality may be emulated by an ordinary periodic timer. Basically,
the TSC API is formed by the Hertz frequency() and Time_Stamp time_stamp() methods. The

https://epos.lisha.ufsc.br/ 14/01/2026 64

first returns the TSC or timer frequency. The second, returns the current number of ticks.

Methods

Hertz frequency()

Time_Stamp time_stamp()

Types

typedef unsigned long Hertz
typedef unsigned long long Time_Stamp

4.8.4. Machine

The Machine mediator is responsible for abstracting target platform. It also provides a set of class
methods that implement machine-related functions (e.g.: panic, reboot, power off, etc).

Generic implementations of Machine interface are provided by Machine_Common. Machine-specific
implementations are provided by each machine's Machine mediator (e.g., PC, ATMega128, Plasma,
etc).

The Machine mediator also defines the io map (Machine::IO), a structure responsible for abstracting
each platform I/O address space.

Methods

static void delay(const RTC::Mircrossecond & time)

static void panic()
This function should be called by the operating system when it "doesn't know" how to revert an
error state. When called, it stops all system activities in order to avoid a greater damage.

Note: calling panic() is a "no return" point, i.e., there's no way to recover from a panic state but
rebooting the system.

static void reboot()
When called, this function causes the system to be shut down and rebooted.

static void poweroff()
When called, this function causes the system to be shutdown.

static unsigned int n_cpus()
This function returns the number of CPUs present in the current platform (to be used in SMP
configurations). Returns 1 when no SMP configuration is available.

static unsigned int cpu_id()
This function returns the ID of the CPU in which the code is currently running (to be used in
SMP configurations). Returns 1 when no SMP configuration is available.

static void smp_init(unsigned int n_cpus)
This functions initializes a SMP configuration (when available).

static void smp_barrier(int n_cpus)

https://epos.lisha.ufsc.br/ 14/01/2026 65

This functions implements a barrier to enforce synchronization of all CPUs.

static void init()
This function is called at system startup and is responsible to configure the platform and get the
system ready to start other components initialization.

4.8.5. IC

The IC mediator is responsible for abstracting the target platform's scheme/hardware for handling
interrupts/exceptions (referred to only as "interrupts" in the remaining of the text). It also provides a
set of methods enable/disable interrupts and to assign interrupt handlers.

Below are the signatures for the component's interface methods. Interrupt_Id is an enumeration of
the available interrupt request queues (IRQs), and is defined for each implementation of the IC
mediator. Interrupt_Handler is the following function typedef:

typedef void (* Interrupt_Handler)();
That means that an interrupt handler should be a method with the following signature:

void handler();

Methods

static void int_vector(Interrupt_Id irq, Interrupt_Handler handler)
This method maps handler to a given IRQ.

static void enable(Interrupt_Id irq)
Enables interrupts for a given IRQ.

static void disable()
Disables all interrupts.

static void disable(Interrupt_Id irq)
Disables interrupts for a given IRQ.

4.8.6. RTC

The RTC family of mediators is responsible for keeping track of current time. It defines two types, as
shown below, Microsecond and Second.
RTC Types

typedef unsigned long Microsecond
typedef unsigned long Second

The RTC API is depicted in the Figure below. It has an inner class Date that defines a date structure
composed by the year (_Y), month (_M), day (_D), hours (_h), minutes (_m), and seconds (_s),
representing a Date.

Date Types

unsigned int _Y
unsigned int _M

http://en.wikipedia.org/wiki/Barrier_%28computer_science%29

https://epos.lisha.ufsc.br/ 14/01/2026 66

unsigned int _D
unsigned int _h
unsigned int _m
unsigned int _s

RTC Methods

RTC()
Constructs an RTC object.

Date date()
Returns a Date object that contains the current date.

void date(const Date & d)
Sets a date received by argument.

Second seconds_since_epoch()
Returns the number of seconds since an EPOCH. The EPOCH is defined in the Machine Traits.
For instance, Traits<PC_RTC>::EPOCH_DAYS.

Date Methods

Date()
Date(unsigned int _Y, unsigned int _M, unsigned int _D, unsigned int _h, unsigned
int _m, unsigned int _s)
unsigned int year()
unsigned int month()
unsigned int day()
unsigned int hour()
unsigned int minute()
unsigned int second()
void operator <<

4.8.7. Timers

The Timer family of mediators is responsible for counting time. Based on a given and configurable
frequency, the timer will increment or decrement a counter until it reaches zero or a pre-defined
value. When this happens, an interrupt is generated and the event is handled by the specific timer
interrupt handler. Each machine timer can be configured (its frequency) in its Traits class. The
EPOS Timer family of mediators defines three types as shown below:

Types

typedef TSC::Hertz Hertz
typedef TSC::Hertz Tick
typedef Handler::Function Handler

There are some differences between the timers of each architecture, but the common API is
presented below.

https://epos.lisha.ufsc.br/ 14/01/2026 67

Methods

void enable()
Enables the timer by turning on the timer interrupt.

void disable()
Disables the timer by turning off the timer interrupt.

Hertz frequency()
Returns the current timer frequency.

void frequency(Hertz & f)
Sets the timer frequency to f.

void reset()
Resets the timer counter.

Tick read()
Reads the current timer counter value.

int init()
Initializes the timer. This method must only be called by the system during the system
bootstrapping.

PC Timer API

The PC machine has only one Timer, named Timer. The Scheduler_Timer, Alarm_Timer, and user-
defined Timers are multiplexed transparently by Timer.

Timer(const Hertz & frequency, const Handler * handler, const Channel & channel, bool
retrigger)
Creates a Timer with frequency, associates its handler to handler, defines if it will be retrigger or
not, and sets its channel. The channel can be SCHEDULER or ALARM.

4.8.8. UART

UART (Universal Asynchronous Receiver/Transmitter) is used for serial communication over a
peripheral device serial port. The UART API in EPOS is presented below.

Methods

UART(unsigned int unit = 0)
Creates a UART object. The unit defines which hardware device is being used. By default, the
first device is chosen.

UART(unsigned int baud, unsigned int data_bits, unsigned int parity, unsigned int
stop_bits, unsigned int unit = 0)
Creates an UART object with the baud rate (baud), data bits number (data_bits), parity bits
numere (parity), stop bis number (stop_bits), and unit (by default 0).

void config(unsigned int baud, unsigned int data_bits, unsigned int parity,
unsigned int stop_bits)
Configure an UART with the baud rate (baud), data bits number (data_bits), parity bits number

http://en.wikipedia.org/wiki/UART

https://epos.lisha.ufsc.br/ 14/01/2026 68

(parit), and stop bits number (''stop_bits').

void config(unsigned int * baud, unsigned int * data_bits, unsigned int * parity,
unsigned int * stop_bits)
Configure an UART with the baud rate (*baud), data bits number (*data_bits), parity bits
number (*parity), and stop bits number (*stop_bits).

char get()
Gets a byte from a UART device. The method will wait until the data is ready.

void put(char c)
Sends a byte (c) to a UART device. The method will wait until the data is transferred.

4.8.8.1. Example

4.8.9. NIC
The Network Interface Card (NIC) family of hardware mediators provides access to network
interface cards. All NIC devices implement the minimal interface specified bellow:

NIC(unsigned int unit=0)
Specifies the unit to be instantiated based on the order defined in System: :Traits:
:‹Machine_NIC›::NICS.

~NIC()
Destructs a NIC previously created. It deallocates all memory used by the NIC.

int send(const Address, const Protocol &prot, const void *data, unsigned int
size)
Sends size bytes of data to dst with protocol prot.

int receive(Address *src, Protocol *prot, void *data, unsigned int size)
Receives size bytes of data, src and prot are set by the method accordingly.

void reset()
Resets the NIC device.

unsigned int mtu()
Returns the device mtu (Maximum Transmission Unit).

const Address address()
Returns the device address.

const Statistics statistics()



// EPOS PC UART Mediator Test Program #include <utility/ostream.h> #include <uart.h> using
namespace EPOS; int main() { OStream cout; cout << "PC_UART test\n" << endl; PC_UART
uart(115200, 8, 0, 1); cout << "Loopback transmission test (conf = 115200 8N1):";
uart.loopback(true); for(int i = 0; i < 256; i++) { uart.put(i); int c = uart.get(); if(c != i) cout << "
failed (" << c << ", should be " << i << ")!" << endl; } cout << " passed!" << endl; cout <<
"Link transmission test (conf = 9200 8N1):"; uart.config(9600, 8, 0, 1); uart.loopback(false);
for(int i = 0; i < 256; i++) { uart.put(i); for(int j = 0; j < 0xffffff; j++); int c = uart.get(); if(c != i)
cout << " failed (" << c << ", should be " << i << ")!" << endl; } cout << " passed!" << endl;
return 0; }

https://epos.lisha.ufsc.br/ 14/01/2026 69

Returns the NIC Statistics (which provides transmission and reception statistics).

4.8.10. Radio

The Low Power Radio family describes a set of methods and structures common for MAC (Medium
Access Control) protocols for low-power radios. This includes packet format, the addressing word
size, a structure for storing transmission statistics, and methods for sending and receiving data
frames.

4.8.11. EEPROM

EEPROMs (Electrically-Erasable Programmable Read-Only Memory) are non-volatile storage device.
An EEPROM has a high read/write latency and is not area-efficient, so it's commonly used to store
small configuration data. EEPROMs also have a limited life - that is, the number of times it can be
reprogrammed is limited to tens or hundreds of thousands of times. Below is shown the public
interface for the EEPROM mediator.

Methods

unsigned char read(const Address & a)
Reads and returns the byte stored at address a

void write(const Address & a, unsigned char d)
Reprograms the EEPROM. Writes byte d at address a

int size()
Returns the EEPROM size

THIS MUST BE RELOCATED

$EPOS/include/machine/$MACH/memory_map.h


template<> struct Memory_Map<PC> { // Physical Memory enum { MEM_BASE =
Traits<PC>::MEM_BASE, MEM_TOP = Traits<PC>::MEM_TOP }; // Logical Address Space enum
{ APP_LOW = Traits<PC>::APP_LOW, APP_CODE = Traits<PC>::APP_CODE, APP_DATA =
Traits<PC>::APP_DATA, APP_HIGH = Traits<PC>::APP_HIGH, PHY_MEM =
Traits<PC>::PHY_MEM, IO = Traits<PC>::IO_BASE, APIC = IO, VGA = IO + 4 * 1024, PCI = IO
+ Traits<PC_Display>::FRAME_BUFFER_SIZE, SYS = Traits<PC>::SYS, IDT = SYS +
0x00000000, GDT = SYS + 0x00001000, SYS_PT = SYS + 0x00002000, SYS_PD = SYS +
0x00003000, SYS_INFO = SYS + 0x00004000, TSS0 = SYS + 0x00005000, SYS_CODE = SYS +
0x00300000, SYS_DATA = SYS + 0x00340000, SYS_STACK = SYS + 0x003c0000, SYS_HEAP =

https://epos.lisha.ufsc.br/ 14/01/2026 70

For a detailed explanation about the meaning of the above constants, please refer to the EPOS
Developer's guide.

When tasks are being used, the Address_Space abstraction is used to abstracts the memory
segments that belong to the address space of a task. Its public interface is described below. For
more information see the Task and MMU abstraction.

Review Log
Ver Date Authors Main Changes

1.0 Apr 4, 2016 Rodrigo Meurer Import and cleanup from EPOS 1 documentation;
Substitution of JPEG UML images by textual class interfaces

1.1 Apr 10, 2016 Guto Fröhlich Major review

1.2 Mai 12, 2016 Guto Fröhlich Added section on SmartData

1.3 Mai 14, 2016 Guto Fröhlich Utilities classes rewritten

1.4 Feb 24, 2020 Guto Fröhlich Major 2.2 review

1.5 Aug 2x, 2023 José Hoffmann WiP: Updating Digital Units and adding MultiSmartData

SYS + 0x00400000 }; };

http://epos.lisha.ufsc.br/EPOS+User+Guide#Task
http://epos.lisha.ufsc.br/EPOS+User+Guide#MMU

	EPOS 2.2 User Guide
	[Table of contents]
	Table of contents

	1. Introduction
	1.1. EPOS Overview
	1.2. OpenEPOS License
	1.3. Main Features

	2. Setting up EPOS
	2.1. Downloading EPOS
	2.2. Downloading the toolchain
	2.2.1. GCC
	2.2.2. as86/ld86
	2.2.3. 32-bit libs

	2.3. Installing

	3. Running EPOS
	3.1. Compiling
	3.2. Running
	3.2.1. Running on Bare Metal
	3.2.2. Running on Virtualized Host

	3.3. Configuring

	4. EPOS API
	4.1. Memory Management
	4.1.1. Dynamic Memory (Heap)
	4.1.2. Stacks
	4.1.3. Memory Segments
	4.1.4. Address Spaces

	4.2. Process Management
	4.2.1. Task
	4.2.2. Thread
	4.2.3. RT_Thread
	4.2.4. Scheduler

	4.3. Process Coordination (Synchronizers)
	4.3.1. Semaphore
	4.3.2. Mutex
	4.3.3. Condition

	4.4. Timing
	4.4.1. Clock
	4.4.2. Chronometer
	4.4.3. Alarm
	4.4.4. Delay

	4.5. Communication
	4.5.1. Link
	4.5.2. Port
	4.5.3. Mailbox
	4.5.4. Channel
	4.5.5. Network
	4.5.6. IPC
	4.5.7. TSTP
	4.5.8. TCP/IP
	4.5.9. Networking Configuration

	4.6. Sensing and Actuation (Wireless Sensor Network)
	4.6.1. SmartData
	4.6.2. Unit
	4.6.3. Persistent Storage
	4.6.4. Transducers

	4.7. Utilities
	4.7.1. Containers
	4.7.2. OStream
	4.7.3. Random
	4.7.4. CRC
	4.7.5. Spinlock
	4.7.6. Observer
	4.7.7. Handler
	4.7.8. Buffer (Zero-Copy)

	4.8. Hardware Mediators
	4.8.1. CPU
	4.8.2. MMU
	4.8.3. TSC
	4.8.4. Machine
	4.8.5. IC
	4.8.6. RTC
	4.8.7. Timers
	4.8.8. UART
	4.8.9. NIC
	4.8.10. Radio
	4.8.11. EEPROM

	THIS MUST BE RELOCATED
	Review Log

