
Autonomous Raspberry Mini Car
Authors

Daniela Preto
Bruno Manica

Augusto Zwirtes
Sumary
Implement a self-driving remote controlled car using image recognition with machine learning and neural
networks. It will be two parts, in the first one the car will be capable of following a path on the floor and
stop when it detect a obstacle in front of the car. In the last part, the car must be able to recognise road
signs and obstacles.

Motivation
Artificial intelligence is a hot subject and promising in all areas of science. One of our group members is
currently working with image recognition and neural networks on her TCC. We intend to use that
knowledge and apply it on a practical function that both other members are very interested into the
subject of autonomous vehicles. Since it is a subject of heated ethical debates, our attempt will be to
replicate its features, viability and main issues in order to be capable of having a better understanding of
what is going on behind the steering wheel of a driverless vehicle.

Goals
In order to be considered a driverless car our Mini Car has to be capable of recognizing a road, traffic
signs, obstacles and be able to deviate from it , emergency stops, and accelerate accordingly, following
basic traffic laws.

Methodology
We will use the Raspberry Pi 3 board attached to a remote control car chassis. Programming a Raspberry
Pi camera module connected to the board to get the current image of what is in front of the car. Integrate
OpenCV image recognition libraries with TensorFlow Application. Teach a TensorFlow neural network to
be able to recognize the path and the traffic signs and to know what to do in each case.
A motor microcontroller will be needed to accomplish proper energy deliverance to both engines (one to
control the speedy and when the car should stop, and the other to control when the car should change
direction).
We are going to use two separate power supply, for the board we choose a 10000mah power bank and to
the microcontroller we choose to use a pack of 7,2v batteries. At the last part, the Raspberry Pi must be
able to tell what the microcontroller should do.

Tools
Hardware:

Raspberry Pi 3 Model B;
H-Bridge Motor Driver L293D - Integrated circuit used for robotics, that enables a voltage to be
applied across a load in either direction;
Infrared Sensor - To capture the images in front of the car;
Camera Module for Raspberry Pi;
Stepper Motor - To control the front axle;
DC motor - To control the rear axle;
Resistors - Several will be used to control the voltage of peripheral components such as the
infrared sensor and the dc motors
Breadboard - Used to ease the construction of temporary electronic prototypes without soldering.
Jumper Cables - Several will be used to connect each peripheral to the integrated circuit and the
Raspberry GPIO.

Software:
TensorFlow API;
OpenCV libraries;

Tasks
T1: Detail project planning and review the literature.
T2: Demonstrate project viability.
T3:Connect microcontrollers, motors and all the hardwares parts to the Raspberry to be able to control
what the car is going to do by a keyboard.
T4:Connect the camera to raspberry to be able to follow a line. Integrate a infrared sensor with the board.
(Optional)T5:Process the image using the OpenCV libraries and then teach the neural network to
perform image recognition using TensorFlow Application.

Deliverables
D1: Report of the detailed project planning and literature revised.
D2: A project viability report, containing a list of needed tools.
D3: Demonstration of the hardware working.
D4: A video showing the project working and a report containig everything that was done until the actual
state.
D5: A video showing the project working and a report containig everything that was done in the whole.

Schedule
Task 25/

09
02/
10

11/
10

20/
10

25/
10

01/
11

08/
11

15/
11

2
2
/
1
1

2
9
/
1
1

Task1 D1

Task2 D2

Task3 X D3

Task4 X X D4

Task5 X XD
5

OpenCV Viability
In order to make this project viable, we had to install and configure OpenCV in our Raspberry Pi. This
library in the board doesn’t work the same way as in desktops because Raspberrypi doesn’t use Opencv
camera interface. Due to this fact, we had to install and configure raspicam, which is a library that access
the camera and interfaces with OpenCV, that will processes the images reading by raspicam.
Installing OpenCV on the system wasn’t straightforward at all. First, we had to follow some tutorials, and
several additional libraries were needed to be installed on Raspberry, below there is the history of
libraries installed through apt-get, until we could run OpenCV on Raspberry Pi.

libffmpeg-dev;
libjpeg-dev;
libavformat-edv;
libavcodec-dev;
libjpeg-dev;
libxvidcore-dev;
libx264-dev;
libav-tools;
libjasper-dev;
libswscale;
libswscale-dev;
libv4l-dev;
libtiff5-dev;
libpng12-dev;
libavresample-dev;
libgstreamer1.0-dev;
libgtk2.0-dev.

Afterwards, OpenCV was installed and ran using Raspberry camera.

Raspberry Pi Camera
A 5-megapixel camera model was chosen to use in this project. We were able to connect to the Raspberry
Pi and record images.

(Photo taken with Raspberry Pi Camera.)

(Photo taken with a cellphone showing the same photo above.)

L293D - Integrated Circuit

The approach we used to control and test the motors was using a high level language(python). In order to
the motors work correctly, we had to use the Broadcom SOC channel (BCM) numbers instead of the
Raspberry physical pin numbers, as the stantard GPIO libraries used them to enumerate the pins. The
L293D has four inputs and four outputs to control motors.
The inputs are connected to the physical pin 11(BCM 17) and physical pin 13 (BCM 27) to control the back
motor, and physical pin 35(BCM 19) and physical pin 37 (BCM 26) to control the front motor. Two outputs
are set to the back motor and two to the front motor.

Keyboard Control
Three classes were developed to control the cart with the keyboard.
The Main Class:

The Controller class (It is connected to the pins of the board to know which direction to follow)



import tkinter as tk import os from pi_vector import Vector from getpass import getuser isRpi =
getuser() == "pi" if isRpi: from controller import Controller class MainWindow(tk.Tk): ''' Handles the
keyboard events and calculates the direction ''' def __init__(self): tk.Tk.__init__(self) #Configure key
bindings and data structures self.direction = Vector(0, 0) self.controller = Controller()
self.bind("<Escape>", lambda _ : self.quit()) self.bind("<FocusOut>", self.clear_direction)
#self.bind("<KeyPress-Space>", lambda _ : self.controller.horn(True)) #self.bind("<KeyRelease-
Space>", lambda _ : self.controller.horn(False)) self.keys = {"Up" : Vector(0, 1), "Down" : Vector(0, -1),
"Right" : Vector(1, 0), "Left" : Vector(-1, 0)} for n in self.keys: self.bind("<KeyPress-" + n + ">",
self.keydown) self.bind("<KeyRelease-" + n + ">", self.keyup) # Build window self.title("Raspberry pi
autonomous car") self.width = 300 self.height = 200 self.label_height = 40
self.geometry("{}x{}".format(self.width, self.height)) self.columnconfigure(0, minsize=self.width)
self.rowconfigure(0, minsize=self.height - self.label_height) self.rowconfigure(1,
minsize=self.label_height) #Build widgets self.label = tk.Label(self, text="Use the direction keys in
your\nkeyboard to move the car", font=("Helvetica", 10), anchor=tk.CENTER); self.shape = None
self.canvas = tk.Canvas(self, width=self.width, height=self.height - self.label_height) center_x,
center_y = self.width / 2., (self.height - self.label_height) / 2. self.canvas.create_oval(center_x - 10,
center_y - 10, center_x + 10, center_y + 10, fill="red") # Draw the widgets self.canvas.grid(column =
0, row=0, sticky=tk.N+tk.S+tk.E+tk.W) self.label.grid(column=0, row=1,
sticky=tk.N+tk.S+tk.E+tk.W) self.after(100, self.check_collision) def clear_direction(self, e):
self.direction = Vector(0, 0) self.update() def update(self): def translate(p, v): # when drawing in the
GUI the y axis is inverted return Vector(p.x + v.x, p.y - v.y) if self.shape is not None:
self.canvas.delete(self.shape) center = Vector(self.width / 2., (self.height - self.label_height) / 2.) d =
translate(center, self.direction.normal() * 50) self.shape = self.canvas.create_line(center.x, center.y,
d.x, d.y, width=10, fill="red") #sends the direction vector to the controller self.controller <<
self.direction def keydown(self, e): self.direction += self.keys[e.keysym] self.update() def keyup(self, e):
self.direction -= self.keys[e.keysym] self.update() def check_collision(self):
self.controller.check_collision() self.after(100, self.check_collision) def main(): os.system("xset r off")
try: win = MainWindow() win.focus_set() win.mainloop() os.system("xset r on") except: os.system("xset
r on") if __name__ == '__main__': main()



import RPi.GPIO as GPIO from time import sleep BACK_MOTOR_DATA_ONE = 17
BACK_MOTOR_DATA_TWO = 27 BACK_MOTOR_ENABLE_PIN = 18 FRONT_MOTOR_DATA_ONE = 19
FRONT_MOTOR_DATA_TWO = 26 INITIAL_PWM_DUTY_CYCLE = 100 PWM_FREQUENCY = 1000
COLLISION_PIN = 2 HORN_FREQUENCY = 500 class Controller: def __init__(self): self.collided =
False GPIO.setmode(GPIO.BCM) GPIO.setup(BACK_MOTOR_DATA_ONE, GPIO.OUT)

The last class is the Vector (This class implements basic operations with vectors).

Demonstration
This is a demonstration of the first part. We develop Python classes to control the car by a keyboard.
Video "Demonstration Using a Keyboard"

Image Processing
1. Blurring
Image blurring is achieved by convolving the image with a filter kernel. It removes high frequency content
(noise) from the image. So edges are blurred a little bit in this operation.

2. Equalization
Used to normalize the brightness of the pixels in the image. A bright image will have all pixels confined to
high values. In order to have a good image, the equalization stretches these values across the image. This
improves the contrast of the image.
3. Filter Colors
Colors are filtered to obtain only the yellow tones of the frame.

GPIO.setup(BACK_MOTOR_DATA_TWO, GPIO.OUT) GPIO.setup(FRONT_MOTOR_DATA_ONE,
GPIO.OUT) GPIO.setup(FRONT_MOTOR_DATA_TWO, GPIO.OUT) GPIO.setup(COLLISION_PIN,
GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.setup(BACK_MOTOR_ENABLE_PIN, GPIO.OUT)
self._pwm = GPIO.PWM(BACK_MOTOR_ENABLE_PIN, PWM_FREQUENCY)
self._pwm.start(INITIAL_PWM_DUTY_CYCLE) def __lshift__(self, dir): self.go_to(dir) def go_to(self, dir):
if dir.size > 0: if dir.y == 0: self.back_idle() elif dir.x == 0: self.front_idle() if dir.y > 0: self.forward()
elif dir.y < 0: self.reverse() if dir.x > 0: self.right() elif dir.x < 0: self.left() else: self.stop() def
forward(self): if not self.collided: GPIO.output(BACK_MOTOR_DATA_ONE, True)
GPIO.output(BACK_MOTOR_DATA_TWO, False) def reverse(self):
GPIO.output(BACK_MOTOR_DATA_ONE, False) GPIO.output(BACK_MOTOR_DATA_TWO, True) def
left(self): GPIO.output(FRONT_MOTOR_DATA_ONE, True) GPIO.output(FRONT_MOTOR_DATA_TWO,
False) def right(self): GPIO.output(FRONT_MOTOR_DATA_ONE, False)
GPIO.output(FRONT_MOTOR_DATA_TWO, True) def stop(self): self.back_idle() self.front_idle() def
front_idle(self): GPIO.output(FRONT_MOTOR_DATA_ONE, False)
GPIO.output(FRONT_MOTOR_DATA_TWO, False) def back_idle(self):
GPIO.output(BACK_MOTOR_DATA_ONE, False) GPIO.output(BACK_MOTOR_DATA_TWO, False) def
horn(self, active): pass def check_collision(self): self.collided = not GPIO.input(COLLISION_PIN) if
self.collided: GPIO.output(BACK_MOTOR_DATA_ONE, False)



from math import sqrt, pi, sin, cos class Vector: def __init__(self, x, y): self._x = float(x) self._y = float(y)
self._size = sqrt(self._x ** 2. + self._y ** 2.) @property def x(self): return self._x @property def y(self):
return self._y @property def size(self): return self._size def normal(self): return Vector(self._x /
self._size, self._y / self._size) if self._size > 0 else self def rotate(self, angle): angle *= (pi / 180.) s, c =
sin(angle), cos(angle) return Vector(c * self._x - s * self._y, s * self._x + c * self._y) def __str__(self):
return "({:.4}, {:.4})".format(self._x, self._y) def __neg__(self): return Vector(-self._x, -self._y) def
__add__(self, other): if other is None: return self else: return Vector(self._x + other._x, self._y +
other._y) def __sub__(self, other): return self + (-other) def __mul__(self, s): return Vector(self._x * s,
self._y * s) def __rmul__(self, s): return self.__mul__(s) def __imul__(self, s): return self.__mul__(s) def
__iadd__(self, other): return self.__add__(other) def __isub__(self, other): return self.__sub__(other)

https://youtu.be/mXSH9C5yBdA

4. Canny
Finds the edges of the input image and and marks them in the output map edges using the Canny
algorithm. The smallest value between thresholds is used for edge linking.

5. Probabilistic Hough Transform
The Hough transform is a technique which can be used to isolate features of a particular shape within an
image. Because it requires that the desired features be specified in some parametric form, the classical
Hough transform is most commonly used for the detection of regular curves such as lines, circles, ellipses,
etc. Probabilistic Hough Transform is an optimization of Hough Transform. It doesn’t take all the points
into consideration, instead take only a random subset of points and that is sufficient for line detection. Just
we have to decrease the threshold.

Line Detection Algorithm

Hardware Software Integration



Vec4d LineDetector::detectLine(frame_ref src, frame_ref dest) { GaussianBlur(src, src,
Size(Settings::kernelSize, Settings::kernelSize), 4); Ptr<CLAHE> clahe = createCLAHE(2.);
vector<Mat> channels; split(src, channels); for (auto& c : channels) { clahe->apply(c, c); }
merge(channels, src); Mat gray(src.size(), CV_8UC1); filterColors(src, gray); Mat mask(src.size(),
CV_8UC1); Canny(gray, mask, Settings::lowThreshold, Settings::highThreshold, 3, true);
cvtColor(mask, dest, COLOR_GRAY2BGR); vector<Vec4i> lines; HoughLinesP(mask, lines,
Settings::rho, Settings::theta, Settings::houghThreshold, Settings::minLineLenght,
Settings::maxLineGap); //here is where the direction algorithm, which will be shown below }



#include "_Controller.h" namespace Rpicar { _Controller::_Controller() { wiringPiSetupGpio();
pinMode(BACK_MOTOR_DATA_ONE, OUTPUT); pinMode(BACK_MOTOR_DATA_TWO, OUTPUT);
pinMode(FRONT_MOTOR_DATA_ONE, OUTPUT); pinMode(FRONT_MOTOR_DATA_TWO, OUTPUT);
pwmSetMode(PWM_MODE_BAL); pinMode(BACK_MOTOR_ENABLE_PIN, PWM_OUTPUT); }
_Controller &_Controller::forward(int velocity) { assert((uint) velocity <= MAX_PWM_FREQUENCY);
digitalWrite(BACK_MOTOR_DATA_ONE, HIGH); digitalWrite(BACK_MOTOR_DATA_TWO, LOW);
//pwmWrite(BACK_MOTOR_ENABLE_PIN, velocity); pwmSetClock(velocity); return *this; } _Controller
&_Controller::right() { digitalWrite(FRONT_MOTOR_DATA_ONE, LOW);
digitalWrite(FRONT_MOTOR_DATA_TWO, HIGH); return *this; } _Controller &_Controller::left() {
digitalWrite(FRONT_MOTOR_DATA_ONE, HIGH); digitalWrite(FRONT_MOTOR_DATA_TWO, LOW);
return *this; } _Controller &_Controller::reverse(int velocity) { assert((uint) velocity <=
MAX_PWM_FREQUENCY); digitalWrite(BACK_MOTOR_DATA_ONE, LOW);

Direction decision
To decide the direction, we make the arithmetic mean of the vectors drawn in the previous steps.

digitalWrite(BACK_MOTOR_DATA_TWO, HIGH); pwmWrite(BACK_MOTOR_ENABLE_PIN, velocity);
return *this; } _Controller& _Controller::stop() { return this->idle(Motor::BOTH); } _Controller&
_Controller::after(uint milliseconds) { usleep(milliseconds * 1000); return *this; } _Controller
&_Controller::idle(Motor which) { int modeBack = ((int)which) & 1, modeFront = (((int)which) >> 1) &
1; digitalWrite(BACK_MOTOR_DATA_ONE, modeBack); digitalWrite(BACK_MOTOR_DATA_TWO,
modeBack); digitalWrite(FRONT_MOTOR_DATA_ONE, modeFront);
digitalWrite(FRONT_MOTOR_DATA_TWO, modeFront); return *this; } _Controller
&_Controller::operator<<(const Vector &direction) { int velocity = MAX_PWM_FREQUENCY;//(int)
floor(direction.length()); if (direction.length() == 0) { this->stop(); return *this; } // Y axis if
(direction.y() == 0) this->idle(BACK); else if (direction.y() > 0) this->forward(velocity); else if
(direction.y() < 0) this->reverse(velocity); if (direction.x() == 0) this->idle(FRONT); else if
(direction.x() > 0) this->right(); else if (direction.x() < 0) // X axis this->left(); return *this; } //pwm
issues - api supports _Controller& _Controller::operator<<(const Wait &wait) {
this->after(wait.milliseconds); //milliseconds the controller has to wait return *this; }
Vector::Vector(double x, double y) { this->_x = x; this->_y = y; this->_length = sqrt(pow(this->_x, 2) +
pow(this->_y, 2)); this->_slope = x ? y / x : 0.; } Vector &Vector::rotate(double angle) const { angle *=
(M_PI/180.0); double s = sin(angle), c = cos(angle); return *(new Vector(c * this->_x - s * this->_y, s *
this->_x + c * this->_y)); } Vector &Vector::normal() const { return *(new Vector(this->_x /
this->_length, this->_y / this->_length)); } Vector &Vector::operator-() const { return *(new Vector(-
this->_x, -this->_y)); } Vector &Vector::operator+(const Vector &other) const { return *(new
Vector(this->_x + other._x, this->_y + other._y)); } Vector &Vector::operator*(double scalar) const {
return *(new Vector(scalar * this->_x, scalar * this->_y)); } } /* Region of Interest(ROI) - One of the
approaches taken was to extract the roi of the image, that is cutting the frame in a trapezium. This is
an attempt to get as minimum interference from external sources as possible in the region that the
camera is pointed. */ void LineDetector::extractROI(frame_ref src, frame_ref dest) { Mat mask =
Mat::zeros(src.size(), CV_8UC1); int h = src.size().height, w = src.size().width; int topWidth =
cvFloor(w * .7), bottomWidth = cvFloor(w * .85), height = cvFloor(h * .4); int yTop = (h - height) >> 1,
gapTop = (w - topWidth) >> 1, gapBottom = (w - bottomWidth) >> 1; vector<Point>
points({Point(gapBottom, h), Point(w-gapBottom, h), Point(w-gapTop, yTop), Point(gapTop, yTop)});
fillConvexPoly(mask, points, Scalar(255, 255, 255)); bitwise_and(src, src, dest, mask); } /* Detecting
lines and direction - There are multiple lines detected on the frame. Without considering the
interference from external sources(lighting, reflection, irregular surface), we are able to determine the
slope and length of the lines traced. We want one lane line. When the car has to turn left, the lines
slope will be positive, and if the slope is negative, the car has to turn right. Many variables have to be
considered when a direction of turning has to be chosen, for instance the current car speed, the
external interference, and the response time for processing a frame. This is currently the biggest
challenge we faced. */ HoughLinesP(mask, lines, Settings::rho, Settings::theta,
Settings::houghThreshold, Settings::minLineLenght, Settings::maxLineGap); Vector direction; int c = 0;
for (auto v : lines) { Vector vc(v); if (vc.slope() > 0.) { // line(dest, Point(v[0], v[1]), Point(v[2], v[3]),
Scalar(0, 255, 0), 3); direction = direction + vc; ++c; } } if(c) { direction = direction * (1./(double)c);
Point s(dest.size().width >> 1, dest.size().height); line(dest, s, Point(s.x + direction.x(), s.y -
direction.y()), Scalar(0, 255, 0), 3); }

In this case it was detected only one vector (blue line), so its mean is itself (green line).

Difficulties faced
The processing power of the Raspberry Pi is limited, so we had problems using the filter colors because
the image processing got extremely slow. We decided to remove this filter, but it started to draw lines
beyond those we wanted.

Bibliography
https://github.com/samjabrahams/tensorflow-on-raspberry-pi1.
GARCIA, G.B.; SUAREZ, O.D.; ARANDA, J.L.E.; Learning Image Processing With OpenCV.2.
Birmingham: Packt, 2015. 208p.
OpenCV Neural Network Documentation:3.
http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html
OpenCV Documentation: http://docs.opencv.org/2.4/modules/refman.html4.
L293D Datasheet. Texas Instruments, 1998.5.
PFRETZCHNER, B. Autonomous Car Driving Using a Low-Cost On-Board Computer. 2013. 64p.6.
Bachelor of Science. Department of Computer Science, Technische Universitat Darmtast. June 30,
2013.
PANNU, G.S.; ANSARI, M.D.; GUPTA, P.; Design and Implementation of Autonomous Car Using7.
Raspberry Pi. International Journal of Computer Applications, 2015. Vol.113.
https://github.com/multunus/autonomous-rc-car8.

http://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html
http://docs.opencv.org/2.4/modules/refman.html

	Autonomous Raspberry Mini Car
	Authors
	Sumary
	Motivation
	Goals
	Methodology
	Tools
	Tasks
	Deliverables
	Schedule
	OpenCV Viability
	Raspberry Pi Camera
	L293D - Integrated Circuit
	Keyboard Control
	Demonstration
	Image Processing
	Line Detection Algorithm
	Hardware Software Integration
	Direction decision
	Difficulties faced
	Bibliography

