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Embedded Systems: embedded!

“Hardware and software which forms a component 
of some larger system and which is expected to 
function without human intervention.”

[Foldoc]
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Really Embedded!

Where are the processors?
(Tennenhouse, CACM 43(5):44)
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Embedded X All-purpose

 Embedded
● Dedicated
● Single, previously 

known application
● Small set of 

application-specific 
services and features

● Integrated hardware 
and software design

● Example
●EPOS SoC

 All-purpose
● Generic
● Any, many applications
● Comprehensive set of 

services and features
● Independently 

designed computer, 
operating system, and  
middleware

● Examples
●PC + LINUX + JRE
● IPhone + MacOS + ??? 
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Extreme Integration

 Advances in microelectronics are enabling 
developers to integrate complex hardware 
designs in a single silicon pastille

 Embedded System-On-a-Chip
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Embedded System Design

R E U S E ! ! !
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Component Evolution

modules VB   Javaclasses

1960

procedures

OO++

1970 1980 1990 2000

models

platformHDL IPsISAICscircuits



Jul  2010 http://www.lisha.ufsc.br 9 / 45

Contemporary Design Approaches

 Model-driven Engineering
"A promising approach to address the inability of third-
generation languages to alleviate the complexity of 
platforms and express domain concepts effectively."

[Scmidt 2006]

 Platform-based design
“In essence, a platform is a frozen architecture. Once 
the architecture is frozen, you may standardize the 
interfaces and give the engineers some choice of 
building blocks.”  

[Smith 2004]
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From PIM to PSM
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From PSM to SoC
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The Magic Behind MDE + PBD
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Contemporary Design Flow
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Contemporary Development Tools

 Hardware
● Focus on IP reuse and 

glue-logic generation
● Run-time support is 

mostly considered part 
of application's duties

● Examples
●SOPC Builder from 

ALTERA
●CORAL from IBM
●EDK from XILINX

 Software
● Focus on models, 

refactoring, and 
transformations based 
on middleware

● Hardware and OS 
have existed since the 
creation of the world

● Examples
●UML and MDE tools
●JAVA and PHP RTSS
●Builders
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A few words abut the OS...

 The more complex the application is, the greater 
is the probability it will need some sort of run-
time support system
● Core OS services (scheduling, memory management, 

communication, etc)
● Peripherals abstraction (sensors, actuators, etc)
● Power management
● Dynamically reconfiguration
● ...

 Ordinary operating systems cannot go with the 
dynamism of SoCs
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 HDLs such as VHDL, Verilog, and System C are 
closer to software programming language than 
to older hardware development strategies

 There might soon be no reason to treat them 
differently from software components

 Both domains can to learn from each other
● Software can improve on handling parallelism, 

coordination, and timing
● Hardware can improve on factorization, composition, 

and separation of concerns 
 Embedded system developers could thus 

concentrate on what really matters: applications

and about Hardware Soft IPs



Jul  2010 http://www.lisha.ufsc.br 17 / 45

The Embedded System Challenge 

 We must give each embedded application an 
adequate execution platform ...
● that properly fulfills its requirements (no workarounds, 

no middleware, etc)
● that is delivered as required (application-specific API)
● it doesn't matter what is HW and what is SW

 without having to design a new system for each 
application ...

 and without requiring application developers to 
undergo complicated configuration procedures
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A Plausible Solution

 Apply domain engineering techniques

to produce embedded system components (SW / 
HW / hybrid) that can be (automatically) tailored 
according with the needs of specific applications
 A new methodology emerged

● Application-driven Embedded System Design

● Family-based design
● Object-oriented design
● Feature-based modeling
● Application-oriented design

● Aspect-oriented programming
● Generic programming
● Static metaprogramming
● Generative programming
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Application-oriented
Domain Decomposition
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Application-oriented
Domain Decomposition

 Abstractions model domain entities
 Commonality analysis 

● Build families of abstractions
 Variability analysis

● Shape family members (subclassing or not)
● Isolate scenario aspects

 Factorization
● Configurable features

 Inter-family relationships
● System-wide properties
● Reusable architectures
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Scenario-Independent 
Abstractions

 Can be reused in a variety of scenarios
 Yield components

● Application-ready ADTs
● Correspondence with domain entities

 Families
● Class hierarchy
● Cooperating classes
● Common packages

●Base class or utility classes
●Configurable features
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Inter-Family Relationships

 Shape framework 
composition rules

 Well captured with 
feature-based models

 Avoid
● Restrictive rules
● Loose rules
● Relations for the sake 

of reuse
●Factorization



Jul  2010 http://www.lisha.ufsc.br 23 / 45

Scenario Aspects

 Properties that transcend the scope of single 
abstractions
● Scenario dependencies
● Non-functional properties

 Can be organized as families too
 Applied to abstractions by

● Weavers
● Scenario adapters

AbstractionClient

Scenario Adapter

Scenario

aspect aspect
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Configurable Features

 Configurable features differ from aspects in that
● They are specific to a single family of abstractions (do 

not crosscut families)
● They are not transparent to abstractions

●but encapsulate generic programming implementations of 
algorithms and data structures associated to the feature that 
can be reused by abstractions when the feature is turned on
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 Export families of abstractions to applications as 
if they were a single abstraction
● Well-known to application programmers
● Comprehensive
● Promote requirement analysis

 Support automatic generation
● Interface references can be extracted from 

specifications and trigger the search for adequate 
components

 Rely on feature models

Inflated Interfaces
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Partial and Selective Realization
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Component Frameworks

 Also known as “black-box frameworks”
● Based on the idea of components and defined 

interfaces (in opposition to inheritance and overriding 
used in white-box frameworks)

● The reuse of a component does not imply on reusing 
the whole framework along with it

 Defined as compositions of scenario adapters 
(placeholders for components) and a 
configuration knowledge base that specifies 
components' requirements and dependencies
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The EPOS System

 Embedded Parallel Operating System
● A collection of SW/HW components 
● A meta-programmed framework
● A set of tools to assist the selection, configuration and 

adaptation of components
 10 years old
 50 man/year work (10 % committed)
 Mostly academic

● CS courses on OS and Embedded Systems
 But also industrial

● Telecom
● Multimedia
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EPOS Tool Chain
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EPOS Scales ...
P

ow
er

Cost
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... for the sake of Applications ...
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... with power efficiency
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Hardware Abstraction Layers
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Hardware Mediators

 Sustain an interface contract between system 
abstractions and the machine

 Mostly metaprogrammed
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EPOS Sample Instance

 Single task
 Multiple threading
 Cooperative scheduling (co-routines)
 Dynamic memory allocation

   

Arch. .text(bytes) .data(bytes) .bss(bytes) total(bytes)

IA- 32 926 4 64 994

H8 644 2 22 668

PPC32 1,692 4 56 1,752
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EPOS X eCos: footprint

 eCos - Embedded Cygnus Operating System 
● Customizable run-time support system by RedHat
● Manual configuration
● HAL-based 

 Evaluated instance of eCos
● Same configuration as EPOS

System Portabil i ty  Strategy Size (bytes)

EPOS Hardware Mediators 994

eCos HAL 35,85
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EPOS X eCos: performance

 IA-32-based platform
● Time taken for a consecutive number of context-

switching operations and memory allocations

    

System Benchmark Time taken (µ s)

EPOS context - switch ing 1,502

eCos context - switch ing 2,915

EPOS memory al locat ion 762

eCos memory al locat ion 3,180
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EPOS Framework Metaprogram
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Power Management in EPOS

 Application-driven
 Hierarchical

● At high-level abstractions, propagated to mediators
● Formalized with Petry Nets

 Semantic modes
● OFF
● SUSPEND (hibernation and reconfiguration)
● STAND BY (short-time resume)
● LIGHT (fully functional, low power)
● FULL (performance)

 Autonomous manager integrated within the real-
time scheduler
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PM Event Propagation
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Software Update in EPOS
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Dynamic Reconfiguration in EPOS

 PM + SW Update + mediators
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Final Remarks

 ADESD
● Complements traditional ES methodologies with a 

domain engineering strategy
● Extends the notion of platform to multiple 

architectures (hardware mediators)
 EPOS SoCs

● Automatically generated by tools according with 
application requirements
●Properly designed IPs
●Hardware mediators for the target machine

● Limited by current HDL (aspects, metaprograms, etc)


