
Jul 2010 http://www.lisha.ufsc.br 1 / 45

Application-driven
Embedded System Design

Prof. Antônio Augusto Fröhlich
UFSC/LISHA

guto@lisha.ufsc.br
http://epos.lisha.ufsc.br/

Jul 2, 2010

Jul 2010 http://www.lisha.ufsc.br 2 / 45

Overview

 Embedded System
 Embedded System-on-a-Chip
 Established Embedded System Design Methods
 Application-driven Embedded System Design
 EPOS
 Final remarks
 Case studies and tales

Jul 2010 http://www.lisha.ufsc.br 3 / 45

Embedded Systems: embedded!

“Hardware and software which forms a component
of some larger system and which is expected to
function without human intervention.”

[Foldoc]

Jul 2010 http://www.lisha.ufsc.br 4 / 45

Really Embedded!

Where are the processors?
(Tennenhouse, CACM 43(5):44)

interactive
2%

robots
6%

vehicles
12%

embedded
80%

8­bit
63%

16­bit
12%

>= 32­bit
3%

4­bit
22%

Jul 2010 http://www.lisha.ufsc.br 5 / 45

Embedded X All-purpose

 Embedded
● Dedicated
● Single, previously

known application
● Small set of

application-specific
services and features

● Integrated hardware
and software design

● Example
●EPOS SoC

 All-purpose
● Generic
● Any, many applications
● Comprehensive set of

services and features
● Independently

designed computer,
operating system, and
middleware

● Examples
●PC + LINUX + JRE
● IPhone + MacOS + ???

Jul 2010 http://www.lisha.ufsc.br 6 / 45

Extreme Integration

 Advances in microelectronics are enabling
developers to integrate complex hardware
designs in a single silicon pastille

 Embedded System-On-a-Chip

Jul 2010 http://www.lisha.ufsc.br 7 / 45

Embedded System Design

R E U S E ! ! !

Jul 2010 http://www.lisha.ufsc.br 8 / 45

Component Evolution

modules VB Javaclasses

1960

procedures

OO++

1970 1980 1990 2000

models

platformHDL IPsISAICscircuits

Jul 2010 http://www.lisha.ufsc.br 9 / 45

Contemporary Design Approaches

 Model-driven Engineering
"A promising approach to address the inability of third-
generation languages to alleviate the complexity of
platforms and express domain concepts effectively."

[Scmidt 2006]

 Platform-based design
“In essence, a platform is a frozen architecture. Once
the architecture is frozen, you may standardize the
interfaces and give the engineers some choice of
building blocks.”

[Smith 2004]

Jul 2010 http://www.lisha.ufsc.br 10 / 45

From PIM to PSM

Jul 2010 http://www.lisha.ufsc.br 11 / 45

From PSM to SoC

Jul 2010 http://www.lisha.ufsc.br 12 / 45

The Magic Behind MDE + PBD

Jul 2010 http://www.lisha.ufsc.br 13 / 45

Contemporary Design Flow

Jul 2010 http://www.lisha.ufsc.br 14 / 45

Contemporary Development Tools

 Hardware
● Focus on IP reuse and

glue-logic generation
● Run-time support is

mostly considered part
of application's duties

● Examples
●SOPC Builder from

ALTERA
●CORAL from IBM
●EDK from XILINX

 Software
● Focus on models,

refactoring, and
transformations based
on middleware

● Hardware and OS
have existed since the
creation of the world

● Examples
●UML and MDE tools
●JAVA and PHP RTSS
●Builders

Jul 2010 http://www.lisha.ufsc.br 15 / 45

A few words abut the OS...

 The more complex the application is, the greater
is the probability it will need some sort of run-
time support system
● Core OS services (scheduling, memory management,

communication, etc)
● Peripherals abstraction (sensors, actuators, etc)
● Power management
● Dynamically reconfiguration
● ...

 Ordinary operating systems cannot go with the
dynamism of SoCs

Jul 2010 http://www.lisha.ufsc.br 16 / 45

 HDLs such as VHDL, Verilog, and System C are
closer to software programming language than
to older hardware development strategies

 There might soon be no reason to treat them
differently from software components

 Both domains can to learn from each other
● Software can improve on handling parallelism,

coordination, and timing
● Hardware can improve on factorization, composition,

and separation of concerns
 Embedded system developers could thus

concentrate on what really matters: applications

and about Hardware Soft IPs

Jul 2010 http://www.lisha.ufsc.br 17 / 45

The Embedded System Challenge

 We must give each embedded application an
adequate execution platform ...
● that properly fulfills its requirements (no workarounds,

no middleware, etc)
● that is delivered as required (application-specific API)
● it doesn't matter what is HW and what is SW

 without having to design a new system for each
application ...

 and without requiring application developers to
undergo complicated configuration procedures

Jul 2010 http://www.lisha.ufsc.br 18 / 45

A Plausible Solution

 Apply domain engineering techniques

to produce embedded system components (SW /
HW / hybrid) that can be (automatically) tailored
according with the needs of specific applications
 A new methodology emerged

● Application-driven Embedded System Design

● Family-based design
● Object-oriented design
● Feature-based modeling
● Application-oriented design

● Aspect-oriented programming
● Generic programming
● Static metaprogramming
● Generative programming

Jul 2010 http://www.lisha.ufsc.br 19 / 45

Application-oriented
Domain Decomposition

adapt

adapt

adapt

scen.

asp

asp

Domain

membermember

member

member

family

interface

aspectfeature

Families of
Abstractions Frameworks

Jul 2010 http://www.lisha.ufsc.br 20 / 45

Application-oriented
Domain Decomposition

 Abstractions model domain entities
 Commonality analysis

● Build families of abstractions
 Variability analysis

● Shape family members (subclassing or not)
● Isolate scenario aspects

 Factorization
● Configurable features

 Inter-family relationships
● System-wide properties
● Reusable architectures

Jul 2010 http://www.lisha.ufsc.br 21 / 45

Scenario-Independent
Abstractions

 Can be reused in a variety of scenarios
 Yield components

● Application-ready ADTs
● Correspondence with domain entities

 Families
● Class hierarchy
● Cooperating classes
● Common packages

●Base class or utility classes
●Configurable features

Jul 2010 http://www.lisha.ufsc.br 22 / 45

Inter-Family Relationships

 Shape framework
composition rules

 Well captured with
feature-based models

 Avoid
● Restrictive rules
● Loose rules
● Relations for the sake

of reuse
●Factorization

Jul 2010 http://www.lisha.ufsc.br 23 / 45

Scenario Aspects

 Properties that transcend the scope of single
abstractions
● Scenario dependencies
● Non-functional properties

 Can be organized as families too
 Applied to abstractions by

● Weavers
● Scenario adapters

AbstractionClient

Scenario Adapter

Scenario

aspect aspect

Jul 2010 http://www.lisha.ufsc.br 24 / 45

Configurable Features

 Configurable features differ from aspects in that
● They are specific to a single family of abstractions (do

not crosscut families)
● They are not transparent to abstractions

●but encapsulate generic programming implementations of
algorithms and data structures associated to the feature that
can be reused by abstractions when the feature is turned on

Jul 2010 http://www.lisha.ufsc.br 25 / 45

 Export families of abstractions to applications as
if they were a single abstraction
● Well-known to application programmers
● Comprehensive
● Promote requirement analysis

 Support automatic generation
● Interface references can be extracted from

specifications and trigger the search for adequate
components

 Rely on feature models

Inflated Interfaces

Jul 2010 http://www.lisha.ufsc.br 26 / 45

Partial and Selective Realization

Jul 2010 http://www.lisha.ufsc.br 27 / 45

Component Frameworks

 Also known as “black-box frameworks”
● Based on the idea of components and defined

interfaces (in opposition to inheritance and overriding
used in white-box frameworks)

● The reuse of a component does not imply on reusing
the whole framework along with it

 Defined as compositions of scenario adapters
(placeholders for components) and a
configuration knowledge base that specifies
components' requirements and dependencies

Jul 2010 http://www.lisha.ufsc.br 28 / 45

application

interfaces

scenario adapters

system micro-components
(hardware / software)

system abstractions

Application-oriented
Embedded System

Jul 2010 http://www.lisha.ufsc.br 29 / 45

The EPOS System

 Embedded Parallel Operating System
● A collection of SW/HW components
● A meta-programmed framework
● A set of tools to assist the selection, configuration and

adaptation of components
 10 years old
 50 man/year work (10 % committed)
 Mostly academic

● CS courses on OS and Embedded Systems
 But also industrial

● Telecom
● Multimedia

Jul 2010 http://www.lisha.ufsc.br 30 / 45

EPOS Tool Chain

Analyzer

Generator

components,
mediators and IPs

Configurator

frameworks
elements (glue logic)

scenario
aspects

Info

application's
source code

specified interfaces

framework

HW

HW SW

SW

tailored EPOS

Jul 2010 http://www.lisha.ufsc.br 31 / 45

EPOS Scales ...
P

ow
er

Cost

Jul 2010 http://www.lisha.ufsc.br 32 / 45

... sustaining Real
Design Space Exploration ...

P
ow

er

Cost

Jul 2010 http://www.lisha.ufsc.br 33 / 45

... for the sake of Applications ...

sensor networks

coontrol

telemetry

VoIP

multimedia

P
ow

er

Cost

Jul 2010 http://www.lisha.ufsc.br 34 / 45

... with power efficiency

Data Rate

P
o

w
er

 C
o

ns
um

pt
io

n

MAN

LAN

PAN

Jul 2010 http://www.lisha.ufsc.br 35 / 45

Hardware Abstraction Layers

Jul 2010 http://www.lisha.ufsc.br 36 / 45

Hardware Mediators

 Sustain an interface contract between system
abstractions and the machine

 Mostly metaprogrammed

Jul 2010 http://www.lisha.ufsc.br 37 / 45

EPOS Sample Instance

 Single task
 Multiple threading
 Cooperative scheduling (co-routines)
 Dynamic memory allocation

Arch. .text(bytes) .data(bytes) .bss(bytes) total(bytes)

IA- 32 926 4 64 994

H8 644 2 22 668

PPC32 1,692 4 56 1,752

Jul 2010 http://www.lisha.ufsc.br 38 / 45

EPOS X eCos: footprint

 eCos - Embedded Cygnus Operating System
● Customizable run-time support system by RedHat
● Manual configuration
● HAL-based

 Evaluated instance of eCos
● Same configuration as EPOS

System Portabil i ty Strategy Size (bytes)

EPOS Hardware Mediators 994

eCos HAL 35,85

Jul 2010 http://www.lisha.ufsc.br 39 / 45

EPOS X eCos: performance

 IA-32-based platform
● Time taken for a consecutive number of context-

switching operations and memory allocations

System Benchmark Time taken (µ s)

EPOS context - switch ing 1,502

eCos context - switch ing 2,915

EPOS memory al locat ion 762

eCos memory al locat ion 3,180

Jul 2010 http://www.lisha.ufsc.br 40 / 45

EPOS Framework Metaprogram

Handle Stub

Interface

Client

<<msg>>

0..1

Id Aspect

Adapter

Proxy

Agent

ScenarioAbstraction

Jul 2010 http://www.lisha.ufsc.br 41 / 45

Power Management in EPOS

 Application-driven
 Hierarchical

● At high-level abstractions, propagated to mediators
● Formalized with Petry Nets

 Semantic modes
● OFF
● SUSPEND (hibernation and reconfiguration)
● STAND BY (short-time resume)
● LIGHT (fully functional, low power)
● FULL (performance)

 Autonomous manager integrated within the real-
time scheduler

Jul 2010 http://www.lisha.ufsc.br 42 / 45

PM Event Propagation

Jul 2010 http://www.lisha.ufsc.br 43 / 45

Software Update in EPOS

Jul 2010 http://www.lisha.ufsc.br 44 / 45

Dynamic Reconfiguration in EPOS

 PM + SW Update + mediators

Jul 2010 http://www.lisha.ufsc.br 45 / 45

Final Remarks

 ADESD
● Complements traditional ES methodologies with a

domain engineering strategy
● Extends the notion of platform to multiple

architectures (hardware mediators)
 EPOS SoCs

● Automatically generated by tools according with
application requirements
●Properly designed IPs
●Hardware mediators for the target machine

● Limited by current HDL (aspects, metaprograms, etc)

