
IoT Platform
Software/Hardware Integration Lab at UFSC

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024

Table of Contents
IoT Platform 1 ...

Table of contents 1 ...
1. Prolog 2 ...
2. IoT Platform Overview 3 ...

2.1. SmartData 3 ...
2.2. SmartData Series 4 ...
2.3. Authentication and Authorization 5 ...
2.4. Usefull SmartData Units 6 ...

3. REST API for Stationary Objects 7 ..
3.1. Data Querying 7 ..

3.1.1. Data Aggregation 7 ...
3.1.2. Fault Injection 8 ..
3.1.3. Downsampling 8 ...

3.2. Series Creation 9 ...
3.2.1. Series Types and Modes 9 ...
3.2.2. Series Status 10 ..
3.2.3. Meaninful Types and Status 10 ...

3.3. Data Insertion 16 ..
3.3.1. Bulk Data Insertion 17 ...
3.3.2. Series Documentation 19 ..

3.4. Series Termination 20 ..
3.5. AI Workflows 20 ..

3.5.1. Persistency 23 ...
3.5.2. Loading previous data 24 ..
3.5.3. Inserting new data 24 ...
3.5.4. Notifications 24 ...

3.6. Data Searching 25 ...
3.7. Response codes 28 ...
3.8. Plotting a dashboard with Grafana 28 ...

4. Binary API for SmartData Version 1.1 29 ..
4.1. Create series (Binary) 29 ...
4.2. Insert data (Binary) 29 ...

4.2.1. Binary Multi SmartData 30 ..
4.3. Version format 31 ...

5. Client Authentication 33 ..
6. Scripts 34 ..

6.1. C++ 34 ..
6.1.1. Get Script Example 34 ..

6.2. Python 34 ...
6.2.1. Get Script Example 34 ..
6.2.2. Put Script Example 35 ...

6.3. R 36 ...
6.3.1. Get Script Example 36 ..

7. Troubleshooting 38 ...
7.1. TLS support for Post-Handshake Authentication 38 ...

Review Log 38 ..

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 1

IoT Platform
%9SimR61.

Table of contents
IoT Platform
1. Prolog
2. IoT Platform Overview

2.1. SmartData
2.2. SmartData Series
2.3. Authentication and Authorization
2.4. Usefull SmartData Units

3. REST API for Stationary Objects
3.1. Data Querying

3.1.1. Data Aggregation
3.1.2. Fault Injection
3.1.3. Downsampling

3.2. Series Creation
3.2.1. Series Types and Modes
3.2.2. Series Status
3.2.3. Meaninful Types and Status

Time-Triggered Series
Event-Driven Series

3.3. Data Insertion
3.3.1. Bulk Data Insertion
3.3.2. Series Documentation

3.4. Series Termination
3.5. AI Workflows

3.5.1. Persistency
3.5.2. Loading previous data
3.5.3. Inserting new data
3.5.4. Notifications

3.6. Data Searching
3.7. Response codes
3.8. Plotting a dashboard with Grafana

4. Binary API for SmartData Version 1.1
4.1. Create series (Binary)
4.2. Insert data (Binary)

4.2.1. Binary Multi SmartData
4.3. Version format

5. Client Authentication
6. Scripts

6.1. C++
6.1.1. Get Script Example

#Binary_API_for_SmartData_Version_1.1

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 2

6.2. Python
6.2.1. Get Script Example
6.2.2. Put Script Example

6.3. R
6.3.1. Get Script Example

7. Troubleshooting
7.1. TLS support for Post-Handshake Authentication

Review Log

1. Prolog
LISHA's IoT Platform is an effort to support projects investigating the application of Data Science
algorithms in the realm of the Internet of Cyber-Physical Systems. This document is a technical
documentation of the Platform aimed at supporting real users. Before reading it, or if you just want to
get a glimpse of it, you might want to visit the Platform's site for an overview of its architecture and
the underlying technology. LISHA's IoT Platform is based on EPOS SmartData, so you might also want
to take a look at it before continuing with this document. Finally, if you want to contribute to the
development of the Platform, there is also a Guide about its Internals.

The IoT Platform is organized around a set of microservices relating to storage, processing,
aggregation and visualization of data widely used in LISHA projects. The SmartData format tags data
with spatial location, high definition temporal tagging, authentication and semantics. The
microservice composition is performed through specific workflows for each application. A library of
pre-processing, filters, feature selection, feature extraction, transformation, aggregation and machine
learning algorithms effectively enables the creation of these workflows. The data can also be
recovered through origin, time, space or semantics filtering. Workflows can also be constructed by the
same libraries. The non-relational database and the workflow execution containers have been
designed for scalability on the high-availability platform maintained by SETIC/UFSC (our data center).
The platform also contains a real-time data visualizer, which, after configuration, shows the data
through a website for monitoring and functional verification. The Microservice Manager acts as a
front-end to IoT devices, IoT gateways, Data Analytics services, and a Visualization Engine.
Microservices requests are first handled by the Domain Manager, which is responsible for mapping
SmartData sets to projects and implementing certificate and password-based authentication (both for
users and devices), access control, and secure communication. The SpaceTime Mapper is
responsible for mapping regions of Space and Time to the associated SmartData stored or to be
stored in the Platform. The Insertion and Retrieval managers are responsible for running Data
Science algorithms on the SmartData flowing into and out of the Platform.

Da mesma forma, os dados podem ser recuperados em função da origem, do tempo, do espaço ou da
semântica. A recuperação de dados pode também utilizar workflows construídos com as mesmas
bibliotecas. Tanto o banco de dados não relacional quanto os containers de execução de workflows
foram projetados para escalar sobre a plataforma de alta disponibilidade mantida pela SETIC / UFSC
(nosso data center). A plataforma também conta com um visualizador de dados em tempo real que,
após ser configurado, exibe os dados através de um website para monitoramento e verificação do seu
funcionamento.

https://iot.lisha.ufsc.br/
https://iot.lisha.ufsc.br/Architecture
https://iot.lisha.ufsc.br/Technology
https://epos.lisha.ufsc.br/EPOS+2+User+Guide#SmartData
https://epos.lisha.ufsc.br/IoT+Platform+Internals

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 3

2. IoT Platform Overview

IoT Platform Overview

Each SmartData stored in the Platform is a data point in a SmartData time series, and it is
characterized by a version, a unit, and the SpaceTime coordinates of origin (that is, where and when
the SmartData was produced, created, captured, sampled, etc.).

2.1. SmartData
The SmartData stored and processed by the platform have the following structure:

SmartData

version unit value uncertainty x y z t dev signature

version: the SmartData version:
"1.1": version 1, Stationary (.1), representing data from a device that is not moving;
"1.2": version 1, Mobile (.2), representing data from a device that is moving;

unit: the type of the SmartData (see the SmartData documentation and typical units);
value: the data value (e.g., the temperature measured by a thermometer);
uncertainty: a measure of uncertainty, usually transducer-dependent, expressing Accuracy,
Precision, Resolution, or a combination thereof;
x, y, z: the absolute coordinates of the location where the data originated;
t: the time instant at which the data originated (in UNIX epoch microseconds).
dev: a disambiguation identifier for multiple transducers of the same Unit and space-time
coordinates (e.g., 3-axis accelerometer), "0" otherwise (i.e., if a single transducer is present);
signature: a cryptographic identifier for mobile devices producing SmartData (only for version

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/IoT+Platform#Typical_units_representation

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 4

1.2 / mobile).

SmartData can be represented in JSON as follows:

{
 "version" : unsigned char
 "unit" : unsigned long
 "value" : double
 "uncertainty" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "t" : unsigned long long
 "dev" : unsigned long
 "signature": string
}

assuming the following sizes the types used in this document:

char: 1 byte;
short: 2 bytes;
long: 4 bytes;
long long : 8 bytes;

2.2. SmartData Series
The SmartData Series stored and processed by the platform have the following structure:

SmartData
Series

version unit x y z r t0 tf period count event workflow

version: the version of the SmartData in the series (a series does not contain mixed versions
SmartData);
unit: the type of the SmartData in the series (see the SmartData documentation and typical
units);
x, y, z: the absolute coordinates of the center of the sphere containing the data points in the
series (from a SmartData Interest);
r: the radius of the sphere containing the data points in the series (initially from a SmartData
Interest; is automatically adjusted with data point insertion);
t0: (optional) a timestamp representing the time in which the series begins, in UNIX epoch
microseconds;
tf: (optional) a timestamp representing the time in which the series ends, in UNIX epoch
microseconds;
type: (optional) 'TTH' specifies high-frequency data (KHz sampling) with fixed sampling rate.
Some storage optimizations are applied.
period: (optional) only defined for time-triggered series representing the period of data points

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/IoT+Platform#Typical_units_representation
https://epos.lisha.ufsc.br/IoT+Platform#Typical_units_representation

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 5

(usually from a SmartData Interest, but also from method create);
count: (optional) specifies the number of data points to be captured before closing the series (-
+tf+- is captured when count data points are collected);
event: (optional) a SmartData expression designating an event that marks the beginning of the
series (-+tf+- is derived from the time the expression becomes/became true, representing the
occurrence of "event");
workflow: (optional) specify server-side algorithms to be applied on the series (see AI Workflow
Section);

input workflows are executed during insert operations (method put) to preprocess data,
run machine learning algorithms, fix data points following a measurement error, generate
notifications and even interact with other series.
output workflows are executed along with query operations (method get) to post process
the data, for instance, performing aggregations or transformations.

SmartData series are classified based on the operation mode of the associated SmartData, either as
Time-Triggered or Event-Driven. At the time of creation, series associated with time-triggered
SmartData must define a period, whereas those not defining this attribute are assumed to be event-
driven. The beginning of a series can be specified by time (giving t0), event, or manually (by not
providing t0, which is then assumed to be the current time). Therefore, the beginning of a time-
triggered series can be an event, and the series will remain a time-triggered series. Similarly, event-
driven series can start at a given time. The end of a series can be specified by time (giving tf),
event, manually (with the method finish, which makes tf equal to the current time), or in terms of
event counting (by giving count). Events are expressed as internal (stored in the platform) or
external SmartData, and arithmetic and logical operators.
A SmartData Series can be represented in JSON as follows:

"Series" : Object {
 "version" : unsigned char
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "tf" : unsigned long long
 "type" : char[3]
 "period" : unsigned long
 "count" : unsigned long
 "event" : string
 "accuracy" : unsigned long
 "workflow" : unsigned long
}

2.3. Authentication and Authorization
API methods require Authentication and Authorization, which is usually done based on digital
certificate hierarchies controlled by the Platform at connection-time. This kind of primary

https://epos.lisha.ufsc.br/IoT+Platform#Authentication_and_Authorization

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 6

authentication is part of the RESTfull API, and, therefore, it is not represented as JSON in any service.
However, in some rare cases, access without a digital certificate can be granted based on
Credentials appended to API method invocations and expressed in this format:

"Credentials" : Object {
 "domain" : string
 "username" : string
 "password" : string
}

domain: the domain the SmartData belongs to (usually a project or a project perspective;
defaults to "public");
username: a username to be used to validate access to the requested domain;
password: a password used to authenticate the user requesting access to a domain.

2.4. Usefull SmartData Units
The formation rules for SmartData Units are available in the EPOS user guide, and some useful units
are listed here.

https://epos.lisha.ufsc.br/EPOS+2+User+Guide#Unit
https://epos.lisha.ufsc.br/Usefull+SmartData+Units

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 7

3. REST API for Stationary Objects

3.1. Data Querying
Method: POST
URL: https://iot.lisha.ufsc.br/api/get.php
Body:

"Series" : Object {
 "version" : unsigned char
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "dev" : unsigned long
 "t0" : unsigned long long
 "tf" : unsigned long long
 "type": char[3]
 "period": unsigned long
 "workflow" : unsigned long
}

SmartData querying is a space-time operation that is not limited or even bound to specific devices.
The geographic search engine built in the Platform will promptly collect data from several devices
within the specified space-time region while processing the query. The definition of dev in this
operation must be interpreted as a filter: if multiple SmartData exists in the designated space-time
region originated from the same coordinates (i.e. (unit, x, y, z, t)), then only those matching
dev are included.

The workflow is used to specify a post-processing function for the query by selecting an output
workflow.

3.1.1. Data Aggregation
While querying data, an aggregation function can be invoked on the resulting data by appending the
following structure to a series object in the body of a query:

"Aggregator" : Object {
 "name" : string,
 "parameter' : float,
 "offset' : unsigned long,
 "lenght' : unsigned long,
 "spacing' : unsigned long
}

The time-related attributes range, delay, and spacing are expressed in us. Only the name attribute
is required, other attributes are optional.
More sophisticated aggregation functions can be modeled as output workflows. An aggregator can
also be combined with an output workflow, where the aggregator runs first (i.e., the workflow will

https://iot.lisha.ufsc.br/api/get.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 8

handle already aggregated data).
The following is a list of the currently available aggregators. To apply one of the following aggregators
simply set the name attribute accordingly.

min: returns the minimum value among the SmartData selected by the query;
max: returns the maximum value among the SmartData selected by the query;
mean: returns the mean of the set of values resulting from the query;
filter: filters the SmartData selected by the query, returning only those whose value is larger
than parameter and smaller than offset, eventually returning {} if no SmartData matching
the criterion is found; if any of the parameter or offset is omitted, then its corresponding
criterion is ignored;
higherThan: filters out SmartData whose value is less than parameter, eventually returning {}
if no SmartData matching the criterion is found;
confidence: the value of the SmartData matching the query is replaced by each SmartData
confidence.

3.1.2. Fault Injection
Some aggregators have been designed to inject faults on the results of SmartData Series queries.
They use the following optional attributes:

offset: offset in us from the beginning of the query results to the first SmartData to undergo
fault injection;
length: length of the time window of fault injection, in us, starting at offset;
spacing: time window in us to wait after offset + length before reapplying the fault injector.

The available fault injectors are:

drift: applies a drift of parameter to the values of the SmartData selected by the query. The
drift varies according to the number of samples it has been applied to following this formula:
drift = parameter * i.
stuckAt: the SmartData selected by the query in the time windows defined by [offset,
length] spaced by spacing have their values set to the value of the first SmartData in the
interval.
constantBias: sums parameter to the value of each SmartData selected by the query in the
time windows defined by [offset, lenght] spaced by spacing.
constantGain: each SmartData selected by the query has its value multiplied by parameter,
considering the windowing mechanism described earlier.

3.1.3. Downsampling
When only sparse data samples of some long or dense data series is needed, the downSampling
aggregator can specify the spacing between the original data points that shall be returned. Uses only
one attribute:

spacing: the number of samples skipped between each returned value.

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 9

The series' original attributes (as period) aren't changed.
In the example below, samples 0, 100, 200, 3000... will be returned.

"series": { "version":"1.1", ... },
"aggregator":{"name":"downSampling", "spacing":100}

3.2. Series Creation
Method: POST
URL for create: https://iot.lisha.ufsc.br/api/create.php
Body:

"Series" : Object {
 "version" : unsigned char
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "dev" : unsigned long
 "t0" : unsigned long long
 "tf" : unsigned long long
 "period" : unsigned long
 "count" : unsigned long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
}

This method creates a SmartData Series if there is no other existing series that already encompasses
the designated unit (unit) and space-time region (x, y, z, r, dev, t0, tf) for the same
operating mode (e.g., time-triggered or event-driven). If the new series intersects existing ones but is
not fully contained in any of them, a new series is created with the smallest space-time region that
contains both the given space-time region and all the preexisting series intersecting with that region.
Thus, this method can be used to merge series irreversibly and must be used with extreme caution
(it can also be very expensive).

All the series in a domain associated with the same unit must either not use an input workflow or
use the same input workflow, thus avoiding multiple insertions of the same SmartData. The
create method follows the execution flow presented below:

3.2.1. Series Types and Modes
The method create can be used to create different types of series with quite different operating
modes. As previously stated, series crated with a defined period are assumed to contain time-
triggered SmartData, whereas those not defining this attribute are assumed to contain event-driven
SmartData. Additional information about the operating regimen of a series can be given through the
attributes t0, tf, count, event, and uncertainty.

https://iot.lisha.ufsc.br/api/create.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 10

For sanity checking and documentation purposes, a series can have a starting time different from its
creation time. The starting time can be explicitly specified using attribute t0. It can also be set
implicitly using the time an event occurs. This event, if set, is documented using the event attribute.
Therefore, if event is given but not t0, then the starting time of the series will be set by the
timestamp in the first SmartData (i.e., series[0]) inserted in the series (which is assumed to be
conditioned by event). If neither t0 nor event are given, then the starting time of the series is
assumed to be the moment in which create was called. Note that specifying an event for a time-
triggered series does not make it an event-driven one, nor does the association of a timestamp t0
with an event-driven series make it time-triggered. It is solely the presence (or absence) of attribute
period that characterizes the series as time-triggered or event-driven. Inserting data before t0 for a
series that has a defined t0 is an error.

Similarly, the end of a series can be specified by giving tf along with create or manually through the
invocation of the finish method, which sets tf to the current time. An event can be specified at
creation-time to document the ending of a series. It can also be supplied along with finish. Trying to
insert SmartData in a series after tf will return an error condition.

3.2.2. Series Status
A SmartData Series can assume the following status during its life cycle:

Status Description

Waiting the series is created, but t0 is not yet set, or it is set but not yet reached

Open data for the series is being collected and tf is not yet set or it is set but not yet
reached

Closed tf is defined and reached, so no further insertions are allowed

Defective the series should be in status closed, but data counting does not match the
specification

3.2.3. Meaninful Types and Status
Time-Triggered Series

TT-t0.tf: begin and end set at creation

JSON Attributes Status

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 11

TT-t0.tf: begin and end set at creation

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "tf" : unsigned long long
 "period" : unsigned long
 "uncertainty" : unsigned long
 "workflow" : unsigned long
}

p = period
t0 = t0
tf = tf
c = (tf - t0) / p
n = current data count
now = current time

Waiting : now 0
Open: t0 f
Closed: (now > tf) ∧ (n >=
c)
Defective: (now > tf) ∧ (n

TT-t0.c: begin set at creation and end set
by count

JSON Attributes Status

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "period" : unsigned long
 "count" : unsigned long
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

p = period
t0 = t0
c = count
tf = t0 + p * c
n = current data count
now = current time

Waiting : now 0
Open: t0 f
Closed: (now > tf) ∧ (n
>= c)
Defective: (now > tf) ∧
(n

TT-t0.f: begin set at creation and end
set by finish

JSON Attributes Status

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 12

TT-t0.f: begin set at creation and end
set by finish

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "period" : unsigned long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

p = period
t0 = t0
tf = finish.t
c = tf → (tf - t0) / p
n = current data count
now = current time

finish.event →
 series.event =
finish.event

Waiting : now 0
Open: t0 Closed: tf ∧
(n >= c)
Defective: tf ∧ (n

TT-e.tf: begin set by data and end set
at creation

JSON Attributes Status

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "tf" : unsigned long long
 "period" : unsigned long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

p = period
tf = tf
t0 = series[0].t
c = t0 → (tf - t0) / p
n = current data count
now = current time

Waiting : ¬t0

Open: t0 ∧ (t0 f)
Closed: t0 ∧ (now > tf) ∧
(n >= c)
Defective: (¬t0 ∧ (now >
tf)) ∨ (t0 ∧ (n

TT-e.c: begin set by data and end by
count

JSON Attributes Status

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 13

TT-e.c: begin set by data and end by
count

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "period" : unsigned long
 "count" : unsigned long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

p = period
c = count
t0 = series[0].t
tf = t0 → t0 + p * c
n = current data count
now = current time

Waiting : ¬t0

Open: t0 ∧ (t0 f)
Closed: t0 ∧ (now > tf) ∧
(n >= c)
Defective: t0 ∧ (now > tf)
∧ (n

TT-e.f: begin set by data and end by
finish

JSON Attributes Status

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "period" : unsigned long
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

p = period
t0 = series[0].t
tf = finish.t
c = t0 ∧ tf → (tf - t0) / p
n = current data count
now = current time

Waiting : ¬t0

Open: t0 ∧ ¬tf

Closed: t0 ∧ tf ∧ (n >=
c)
Defective: t0 ∧ tf ∧ (n

Event-Driven Series

ED-t0.tf: begin and end set at creation

JSON Attributes Status

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 14

ED-t0.tf: begin and end set at creation

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "tf" : unsigned long long
 "uncertainty" : unsigned long
 "workflow" : unsigned long
}

t0 = t0
tf = tf
n = current data count
now = current time

Waiting : now 0
Open: t0 f
Closed: (now > tf) ∧ (n > 0)
Defective: (now > tf) ∧ (n
= 0)

ED-t0.c: begin set at creation and end
set by count

JSON Attributes Status

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "count" : unsigned long
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

t0 = t0
c = count
tf = series[c].t
n = current data count
now = current time

Waiting : now 0
Open: ¬tf ∧ (t0 Closed: tf

∧ (n >= c)
Defective: tf ∧ (n

ED-t0.f: begin set at creation and end
set by finish

JSON Attributes Status

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 15

ED-t0.f: begin set at creation and end
set by finish

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "t0" : unsigned long long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

t0 = t0
tf = finish.t
n = current data
count
now = current time

Waiting : now 0
Open: ¬tf ∧ (t0 Closed: tf ∧
(now > tf) ∧ (n >= 0)
Defective: tf ∧ (now > tf) ∧
(n = 0)

ED-e.tf: begin set by data and end set at
creation

JSON Attributes Status

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "tf" : unsigned long long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

tf = tf
t0 = series[0].t
n = current data count
now = current time

Waiting : ¬t0

Open: t0 ∧ (t0 f)
Closed: t0 ∧ (now > tf) ∧
(n > 0)
Defective: (now > tf) ∧
(n = 0)

ED-e.c: begin set by data and end by count

JSON Attributes Status

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 16

ED-e.c: begin set by data and end by count

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "count" : unsigned long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

c = count
t0 = series[0].t
tf = series[c].t
n = current data count
now = current time

Waiting : ¬t0

Open: t0 ∧ ¬tf

Closed: t0 ∧ tf

ED-e.f: begin set by data and end by
finish

JSON Attributes Status

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "event" : string
 "uncertainty" : unsigned long
 "workflow" : unsigned long
 }
}

t0 = series[0].t
tf = finish.t
n = current data count
now = current time

finish.event →
 series.event =
finish.event

Waiting : ¬t0

Open: t0

Closed: t0 ∧ t0 ∧ (n >
0)
Defective: t0 ∧ t0 ∧ (n
= 0)

3.3. Data Insertion
Method: POST
URL: https://iot.lisha.ufsc.br/api/put.php
Body:

"SmartData" : Array [
 {
 "version" : unsigned char
 "unit" : unsigned long
 "value" : double
 "uncertainty" : unsigned long
 "x" : long
 "y" : long

https://iot.lisha.ufsc.br/api/put.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 17

 "z" : long
 "t" : unsigned long long
 "dev" : unsigned long
 }
]

This method is used to insert SmartData into the existing SmartData Series. The series is implicitly
determined from the given unit and space-time coordinates. If the data point does not fit in any
existing series, then the operating fails, and error 400 is returned. Multiple data points can be
inserted at once (hence the Array in the JSON).

3.3.1. Bulk Data Insertion
To optimize the processing of multiple SmartDate originated at the same location (i.e. r=0), the put
can receive alternative payloads (body). Currently, the following structures are supported:

Periodic SmartData with Constant Uncertainty
If the multiple values being inserted have a constant time rate (e.g., they result from a regular
periodic sampling), the period attribute can be used in the header, and the offset is omitted in the
data points. Additionally, if a constant uncertainty — possibly 0 — is to be assigned to all data
points, it can also be specified in the header.

Body: MultiValueSmartData

"MultiValueSmartData" : Object {
 "version" : unsigned char
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : 0
 "t0" : unsigned long long
 "dev" : unsigned long
 "type" : char(3), // 'TTH', 'TTL', 'ED'. 'OLD'
assumed if not present
 "period" : unsigned long,
 "uncertainty" : unsigned long // OPTIONAL: if given, then ommit it in
data points
 "period" : unsigned long // OPTIONAL: if given, then ommit offset
in data points
 "datapoints": Array [
 {
 "offset : unsigned long // OPTIONAL, not used if period is
informed in the header
 "value" : double
 "uncertainty" : unsigned long // OPTIONAL, not used if informed in the
header
 }
]
}

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 18

MultiDeviceSmartData
When a node or datalogger is regularly capturing several variables of the same type, with the same SI
unit, a MultiDeviceSmartData can be used to spare the space-time coordinates.
Body: MultiDeviceSmartData

"MultiDeviceSmartData" : Object {
 "version" : unsigned char
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : 0
 "t0" : unsigned long long
 "datapoints": Array [
 {
 "offset : unsigned long
 "value" : double
 "dev" : unsigned long;
 "uncertainty" : unsigned long
 }
]
}

Note that the device field must start from 0 since it is only used for disambiguation for multiple
same-type sensors.

MultiUnitSmartData
Allows multiple variables from a single space-time coordinate to be inserted without repeating such
coordinate.

Body: MultiUnitSmartData

"MultiUnitSmartData" : Object {
 "version" : unsigned char
 "x" : long
 "y" : long
 "z" : long
 "r" : 0
 "t0" : unsigned long long
 "datapoints": Array [
 {
 "unit" : unsigned long
 "offset : unsigned long
 "value" : double
 "dev" : unsigned long;
 "uncertainty" : unsigned long
 }
]
}

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 19

3.3.2. Series Documentation
The information present in the series creation data, determining the data type (SI Unit), position, and
time interval, isn't enough to completely describe the meaning of data. Therefore, the API was
extended to support the insertion and the querying of a human-readable description of the data.
The API offers two methods: describe and list. To describe the data of a series, the describe
method accepts a JSON name series_description. If the dev field contains 0, the description applies
to all devices of the defined unit at this position. Information about a specific device, or specific
devices with different type and period fields can also be inserted.

Method: POST
URL: https://iot.lisha.ufsc.br/api/describe.php
BODY:

"series_description" : {
 "version" : unsigned char
 "unit" : unsigned long
 "x" : long,
 "y" : long,
 "z" : long,
 "type" : char(3),
 "period" : unsigned long,
 "dev" : unsigned long,
 "description" : string
}

The describe method also supports an array of descriptions, as illustrated below:

"series_descriptions" : [
 { "version" : unsigned char, "unit" : usigned long, "x": long,
....,"description": string},
 { "version" : unsigned char, "unit" : usigned long, "x": long,
....,"description": string},
 ]

The list method supports queries the descriptions of devices of a specific region. It uses the series
JSON. Several fields are optional for this method, The unit, dev, type and period parameters can be
used to filter specific information.

Method: POST
URL: https://iot.lisha.ufsc.br/api/list.php
BODY:

"series" : {
 "version" : unsigned char,
 "unit" : unsigned long,
 "x" : long,
 "y" : long,

https://iot.lisha.ufsc.br/api/describe.php
https://iot.lisha.ufsc.br/api/list.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 20

 "z" : long,
 "r" : long,
 "dev": unsigned long,
 "type" : char(3),
 "period" : unsigned long,
 }

Both methods, like all others, require authentication through certificate or username/password and
are restricted to the user's domain.

3.4. Series Termination
Method: POST
URL: https://iot.lisha.ufsc.br/api/finish.php
Body:

"Series" : Object {
 "version" : 1.1
 "unit" : unsigned long
 "x" : long
 "y" : long
 "z" : long
 "r" : unsigned long
 "tf" : unsigned long long
 "event" : string
 "uncertainty" : unsigned long
}

This method is used to finish a SmartData Series. It adjusts the series final time stamp tf and, if event
is given, this method concatenates it with the previous value of that attribute. Inserting new
SmartData by invoking put after having invoked finish is an error and will return 400.

3.5. AI Workflows
SmartData on the platform can be submitted to specific workflows to process data before its proper
insertion (e.g., fix known sensors error and notifying anomalies) or by applying a transformation on
requested data (e.g., Fast Fourier Transform), called Input and Output Workflows, respectively. An
Input Workflow can be specified during Series creation, denoting the "ID" of an existing workflow at
the respective Series domain. In this way, its execution takes place during SmartData insertions on
this Series (see Section Overview of the Platform for more details of this relation). Input workflows are
applied to each SmartData individually, and persistency is achieved using daemons. Moreover, an
Input Workflow can store useful meta-data inside the SmartData record (using the uncertainty
remaining bits), or a new Series, or a file in the same folder as the workflow code. An Output Workflow
can be specified during a query request, denoting the "ID" of an existing Output Workflow at the
respective domain. In this way, its execution is applied at the end of a query process to consider all
SmartData records returned. For both Workflow types, if no workflow "ID", or 0 (default), is specified
in the Series, no Workflow is executed. The same applies if the specified "ID" is not available in the

https://iot.lisha.ufsc.br/api/finish.php
https://epos.lisha.ufsc.br/IoT+Platform#Overview_of_the_platform

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 21

current domain.

Workflows are stored on directories according to the domain they belong to (i.e.,
"smartdata/bin/workflow/<domain>/"). Input Workflows are named "in" followed by the workflow
number ("ID"). For instance, the first Input Workflow of a domain, ID = 1, must be named "in1".
Output Workflows are named "out" followed by the workflow number (e.g., "out1"). Currently, for
security purposes, installing a Workflow code requires a system admin to intermediate the operation,
but the code itself can be user-defined for the specific domain of interest.

Input Workflow Diagram

Output Workflow Diagram

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 22

A simple example of python workflow
#!/usr/bin/env python3
import sys
import json

if __name__ == '__main__':
 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++
 smartdata = json.loads(sys.argv[1]) # Load json from argv[1]
 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++

 # ...
 # DO SOMETHING HERE
 smartdata['value'] = 2*smartdata['value'] # example
 # ...

 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++
 print(json.dumps(smartdata)) # Send smartdata back to API
 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 23

3.5.1. Persistency
Input Workflows are executed for each instance of SmartData. Workflows that require persistence
(e.g., requiring information of more than one SmartData) should implement a daemon. Daemons are
meant to be separated processes that receive data from the workflow, do the processing, and either
return this to the workflow or insert the processed data on a new Series, preserving the original data.
Before a workflow execution, the platform checks for the existence of a demon for this workflow. If so,
the platform Backend assures its execution, initializing it whenever necessary. Additionally, each
workflow must manage its data, including the daemon's input and output.

Daemons are placed on the same directory as their respective workflows (i.e.,
"smartdata/bin/workflow/<domain>/"), and each workflow can have only one daemon. The daemons
are named with the same name of the workflow plus the word "daemon" (e.g., "in1_daemon"). Files
that receive daemon inputs or outputs are named with the same name of the workflow plus the word
"input" or "output" accordingly (e.g., "in1_input" and "in1_output").

The platform Backend manages the execution of a daemon. The Backend creates two support files,
one for the process pid and the other for the execution log. The pid and log file are named with the
workflow name plus the word "pid" or "log" accordingly (e.g., "in1_pid" and "in1_log").

Daemons also have a life cycle, finishing their execution after the current SmartData processing. To
achieve this, one can implement a watchdog implementation over the input file content.

The following example of workflow writes its input into a file to be processed by the daemon, keeping
data persistency

import sys, json
from process_verify import process_is_alive

if __name__ == '__main__':
 '''
 This dummy workflow is used to calculate the average of the last 10 inserted
SmartData
 '''

 if len(sys.argv) != 2:
 exit(-1)

 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++
 smartdata = json.loads(sys.argv[1]) # Load json from argv[1]
 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++

 # ...
 # DO SOMETHING HERE IF IT WILL CHANGE DATA
 # ...

 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++
 print(json.dumps(smartdata)) # Send smartdata back to API

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 24

 #+++++++++++++++++ DO NOT CHANGE THIS LINE +++++++++++++++++

 # ...
 # DO SOMETHING HERE IF IT WILL NOT CHANGE DATA (INCREASES PARALELLISM BY UNBLOCKING
PHP)
 with open('in1_input', 'a') as fifo:
 fifo.write(json.dumps(smartdata)+"\n")
 fifo.close()
 # ...

3.5.2. Loading previous data
Daemon receives its entry from its respective input file.
However, a Daemon can also request historical data executing an importer to complete its input file.

The following piece of code represents an example of a daemon calling a data importer
...
 if not os.path.exists("in1_input"):
 os.system("./get_data.py <parameters>")
...

3.5.3. Inserting new data
In case the workflow does not change the SmartData, it may insert the processed SmartData on other
time Series through a data inserter. This script must create a different Series for the new data. A
possibility is to use the very same series configuration but with another dev.

The following piece of code represents a daemon calling an export script to create the new series
...
if os.path.exists("put_data.py"):
 os.system("./put_data.py <parameters>)
...

3.5.4. Notifications

Workflows on the platform can produce notifications on the processed data. These notifications carry
information related to faults and abnormalities on the data. The SmartData, in JSON format, has a
notification field ("notify") appended to its structure before returning to the insertion API. The
following PHP code snippet depicts the process of adding the notify information to the SmartData
JSON.

...
$smartdata = json_decode($argv[1],false);
// 0x84924964 == 2224179556 == temperature
if ($smartdata->unit == 2224179556 && $smartdata->value < 0) {
 $smartdata->notify = array(
 'severity' => 100,
 'description' => 'Invalid value for temperature in SI unit

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 25

(Kelvin)');
}
echo json_encode($smartdata); //Send smartdata back to API
...

Whenever a notify structure is attached to the returned SmartData JSON, the platform will log the
information on the API log files. A notification severity control is recommended to avoid excessive
notification entries on the API logs. A severity threshold can be specified during the workflow building
so that a notify structure would only be added to the processed SmartData when the notifications
reach the workflow severity threshold.
The daemon process handles the current severity level and the severity threshold. The verification is
done during insertions and can be logged to auxiliary files to maintain persistency through multiple
executions.
Additionally, a workflow can be customized to communicate notifications to the domain owners, for
instance, by sending an email to the domain mail group. This information can also be brought to the
platform so that the API would perform the communication. The following is a PHP code snippet
depicting an example of the notifications handling on the API.

private function _notify(\stdClass $json) {
 if(isset($json->notify)) {
 $notification = "Domain: {$this->_domain}. Data irregularity.";
 if(isset($json->notify->description)) {
 $notification .= " Description: {$json->notify->description}.";
 }
 if(isset($json->notify->severity)) {
 //threshold can be either defined by the workflow or by a standard
value (100% in this case)
 // isset($json->notify->severity_threshold)
 $notification .= " Severity level: {$json->notify->severity}.";
 if ($json->notify->severity > 100) {
 //send mail or message bus
 }
 }
 //log notification
 self::debug_X($notification);
 }
 }

Output workflows and Search workflows can also produce notifications. However, the API will not
handle those notifications since data processed by them is directly returned to the user.

3.6. Data Searching
Method: POST
URL: https://iot.lisha.ufsc.br/api/search.php

A Search AI Workflow is a server-side code capable of searching for specific data patterns using one

https://iot.lisha.ufsc.br/api/search.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 26

or multiple data matching policies and AI algorithms. Similar to the IoT Platform, a Search AI Workflow
is a space-time operation that, instead of using the typical geographic search engine built in the
Platform to collect data, runs a query using the specified space-time region as the parameter.

This method queries for data following, but not limited to, a SmartData Series and the specified
domain, defined through the IoT Platform procedure. The query and data handling processes are
specific to the search code related to the domain.

The workflow attribute specifies the "ID" of the selected Workflow. A secondary JSON object, named
parameter, is a customizable object to provide additional information to the Search Workflow. The
semantics of the received parameters are directly related to the Search Workflow. For instance, a
pattern searching algorithm can interpret the parameters as a list of SmartData that represents the
desired pattern. However, parameters are not necessarily SmartData objects and are free-form
key/value pairs. The parameters are made available to the Search Workflow by the Backend API when
parsing the Search request. The following is an example of a Search request body with a customizable
parameter object:

"series": Object {
 "version" : 1.1,
 "unit" : unsigned long,
 "x" : long,
 "y" : long,
 "z" : long,
 "r" : unsigned long,
 "t0" : unsigned long long,
 "tf" : unsigned long long,
 "uncertainty" : unsigned long,
 "workflow" : unsigned long
},
"parameter" : Object {
 ...
 }
}

Search Workflows are stored on the same directory of regular Workflows from the same domain (i.e.,
"bin/workflow/<domain>/"). Search Workflows are named "search" followed by the Workflow number
("ID"). For instance, "search1" stands for Search Workflow 1. Similar to regular workflows, for security
purposes, installing a Search Workflow code requires a system admin to intermediate the operation,
but the code itself can be user-defined for the specific domain of interest.

The Series and the parameter objects are made available as arguments 1 and 2 from the argument
vector, where argument 1 corresponds to the provided Series and argument 2 corresponds to the
parameter object. Search Workflows return data to the API through console prints. Thus, the Search
Workflow can only print the final JSON object during its execution. The output of a Search Workflow
must be a set of SmartData, possibly with multiple devs and units.

An example of a search algorithm is presented below:

https://epos.lisha.ufsc.br/IoT+Platform#Data_Querying
https://epos.lisha.ufsc.br/IoT+Platform#SmartData_Series
https://epos.lisha.ufsc.br/IoT+Platform#Authentication_and_Authorization

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 27

#!/usr/bin/php
<?php

require_once(__DIR__ . '/../../smartdata/SmartAPI.php');
use SmartData\SmartAPI\Internals\{JsonAPI, BinaryAPI};
use SmartData\{Series, Backend_V1_1, Credentials, Config};

function get_data($json) {
 $json_aux = json_decode($json);
 list($credentials,$series,$aggregator,$options) = JsonAPI::parse_get($json_aux);

 $DOMAIN = $credentials->domain;

 $cred = new Credentials($DOMAIN,
 $username,
 $password);

 $backend = new Backend_V1_1($cred, true);

 $response = $backend->query($series);

 return json_encode($response);
}

$series_param = json_decode($argv[1]);
$options_param = json_decode($argv[2]);

$series1 = array(
 'series' => array(
 'version' => "1.1",
 'unit' => 2224179556,
 'x' => $series_param->x,
 'y' => $series_param->y,
 'z' => $series_param->z,
 'r' => $series_param->r,
 't0' => $series_param->t0,
 't1' => $series_param->t1,
 'dev' => $series_param->dev,
 'workflow' => 0
)
);

$data = json_decode(get_data(json_encode($series1)));
$series = $data->series;

$response_json = array('series' => array());
$index = 0;

foreach ($series as &$smartdata) {

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 28

 $temp_celsius = $smartdata->value - 273.15; // kelvin to celsius degrees
 if ($temp_celsius < 0 && $temp_celsius > 45)
 $response_json[$index++] = $smartdata;
}
unset($smartdata);

echo json_encode($response_json);

3.7. Response codes
The HTTP response codes are used to provide a response status to the client.

Possible response codes for an API request:

200:
get.php: it means that a query has been successfully completed, and the response
contains the result (which may be empty)

204:
create.php: it means that the series has been created successfully (there is no content
in the response).

400: it means there is something wrong with your request (bad format or inconsistent field).
401: it means that you are not authorized to manipulate the domain specified.

3.8. Plotting a dashboard with Grafana
To plot a graph, do the following:

1. Inside Grafana's interface, go to Dashboards => Create your first dashboard => Graph.
2. Now you should be seeing a cartesian plane with no data-points, click on Panel Title =>
Edit.
3. This should take you to the Queries tab. Now you can choose your Data Source and put its
due information.
4. If you are using SmartData UFSC Data Source, fill the Interest and Credential fields with
the information used for insertion (see ((IoT Platform|#Create_series|Section Create]).
5. You can tweak your plotting settings by using the Visualization tab. Save your Dashboard
by hitting Ctrl+S.

After doing these steps, the information should be shown instantly.

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 29

4. Binary API for SmartData Version 1.1
To save energy on the IoT wireless, battery-operated network, the platform also accepts SmartData
structures, encoded as binary, considering 32-bit little-endian representation. Each data point is sent
as a concatenation of the Series and the SmartData structures in binary representation, totaling 78
bytes.

struct Series {
 unsigned char version;
 unsigned long unit;
 long x;
 long y;
 long z;
 unsigned long r;
 unsigned long long t0;
 unsigned long long tf;
}
struct SmartData {
 unsigned char version;
 unsigned long unit;
 double value;
 unsigned long uncertainty;
 long x;
 long y;
 long z;
 unsigned long dev;
 unsigned long long t;
}

4.1. Create series (Binary)
Create follows the same semantic presented in Create Series.

Method: POST
URL for create: https://iot.lisha.ufsc.br/api/create.php
Body: Series

Byte 36 32 28 24 20 16 8 0

version unit x y z r t0 tf

4.2. Insert data (Binary)
Method: POST
URL: https://iot.lisha.ufsc.br/api/put.php
Body: SmartData

https://epos.lisha.ufsc.br/IoT+Platform#Create_series
https://iot.lisha.ufsc.br/api/create.php
https://iot.lisha.ufsc.br/api/put.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 30

Byte 40 36 28 24 20 16 12 8 0

version unit value uncertainty x y z dev t

4.2.1. Binary Multi SmartData
The binary version of Multi SmartData uses different URLs to access the API. Each URL handles a
specific type of data repetition. Thus, the method can attend to the specificities of each binary format.
There are three cases:

MultiValue SmartData
In the binary format, the flag's bit 0 shall be set if the period is defined in the header, or unset if the
offset is defined for each data point. The flag's bit 1 shall be set if the uncertainty is defined in the
header, or unset if it is transmitted with each data point. Therefore, the packet header can have a
length of 30, 34, or 38 bytes.
Method: POST
URL: https://iot.lisha.ufsc.br/api/mv_put.php
Body: MultiDevice SmartData
Binary Format:
Packet Header (first 30 bytes):

Byte 29 25 21 17 13 5 1 0 (4) (4)

version unit x y z t0 dev flag period uncertainty

The payload will also vary from 16 to 8 bytes. If period and uncertainty are informed in the header,
only the value of each data point will be included in the payload. Otherwise, each value is sent along
with both attributes following the table below.

Packet Payload (N x 16 bytes):

Byte 12 4 0

offset value uncertainty

MultiDeviceSmartData
Method: POST
URL: https://iot.lisha.ufsc.br/api/md_put.php
Body: MultiDevice SmartData
Packet Header (first 25 bytes):

https://iot.lisha.ufsc.br/api/mv_put.php
https://iot.lisha.ufsc.br/api/md_put.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 31

Byte 24 20 16 12 8 0

version unit x y z t0

Packet Payload (N x 20 bytes):

Byte 16 8 4 0

offset value dev uncertainty

MultiUnitSmartData
Method: POST
URL: https://iot.lisha.ufsc.br/api/mu_put.php
Body: MultiUnit SmartData

Binary Format:
Packet Header (first 21 bytes):

Byte 20 16 12 8 0

version x y z t0

Packet Payload (N x 24 bytes):

Byte 20 16 8 4 0

unit offset value dev uncertainty

4.3. Version format
The version field has 8 bits and is composed of a major and a minor version. The major version is
related to API compatibility. On the other hand, the minor version defines some properties of the
SmartData. For instance, minor version 1 defines a stationary SmartData, while minor version 2 a
mobile SmartData.

enum {
 STATIONARY_VERSION = (1 << 4) | (1 << 0),
 MOBILE_VERSION = (1 << 4) | (2 << 0),
};

https://iot.lisha.ufsc.br/api/mu_put.php

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 32

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 33

5. Client Authentication
The EPOS IoT API infrastructure supports authentication with client certificates. To implement it, you
should request a client certificate to LISHA through the Mailing List.

If you are using the eposiotgw script to send SmartData from a TSTP network to IoT API infrastructure,
you should do the following steps to authenticate with the client certificate.

1. Use eposiotgw available on EPOS GitLab
2. Copy the files .pem and .key provided by LISHA to the same directory of the eposiotgw script
3. Call eposiotgw using the parameter -c with the value equal to the name of the certificate file
WITHOUT the extension. Both files (.pem and .key) should have the same basename.

If you are using esp8266 with axTLS library, you should convert the certificates to a suitable format,
with two .der files. To do this, follow the instructions below:

openssl pkcs12 -export -clcerts -in client-CERT.pem -inkey client-CERT.key -out
client.p12
openssl pkcs12 -in client.p12 -nokeys -out cert.pem -nodes
openssl pkcs12 -in client.p12 -nocerts -out key.pem -nodes
openssl x509 -outform der -in cert.pem -out cert.der
openssl rsa -outform der -in key.pem -out key.der

https://epos.lisha.ufsc.br/Mailing+List
https://gitlab.lisha.ufsc.br/epos/epos

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 34

6. Scripts

6.1. C++
6.1.1. Get Script Example
This script is based on httplib.

#define CPPHTTPLIB_OPENSSL_SUPPORT
#include "httplib.h"
#include <iostream>

using namespace std;

int main(void) {
 httplib::SSLClient cli("iot.lisha.ufsc.br", 443);
 cli.enable_server_certificate_verification(false);
 const char * series =
"{\"series\":{\"version\":\"1.2\",\"unit\":XXXXXXXX,\"t0\":XXXXXXXX,\"t1\":XXXXXXXX,\"d
ev\":XXXXXXXX,\"signature\":XXXXXXXX},\"credentials\":{\"domain\":\"XXXXXXXX\",\"userna
me\":\"XXXXXXXX\",\"password\":\"XXXXXXXX\"}}";
 auto res = cli.Post("/api/get.php", series, strlen(series) , "text/plain");

 if (res) {
 cout << res->status << endl;
 cout << res->get_header_value("Content-Type") << endl;
 cout << res->body << endl;
 } else {
 cout << "error code: " << res.error() << std::endl;
 }

 return 0;
}

6.2. Python

6.2.1. Get Script Example
The following python code queries luminous intensity data at LISHA from the last 5 minutes.

#!/usr/bin/env python3
import time, requests, json

get_url ='https://iot.lisha.ufsc.br/api/get.php'

epoch = int(time.time() * 1000000)
query = {
 'series' : {
 'version' : '1.1',
 'unit' : 2224179493, //equivalent to 0x84924925 = luminous intensity
 'x' : 741868770,

https://github.com/yhirose/cpp-httplib

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 35

 'y' : 679816011,
 'z' : 25285,
 'r' : 10*100,
 't0' : epoch - (5*60*1000000),
 'tf' : epoch,
 'dev' : 0
 },
 'credentials' : {
 'domain' : 'smartlisha',
 'username' : 'smartusername',
 'password' : 'smartpassword'
 }
 }
session = requests.Session()
session.headers = {'Content-type' : 'application/json'}
response = session.post(get_url, json.dumps(query))

print("Get [", str(response.status_code), "] (", len(query), ") ", query, sep='')
if response.status_code == 200:
 print(json.dumps(response.json(), indent=4, sort_keys=False))

6.2.2. Put Script Example
The following python code inserts a JSON with a certificate.

#!/usr/bin/env python3

To get an unencrypted PEM (without passphrase):
openssl rsa -in certificate.pem -out certificate_unencrypted.pem

import os, argparse, requests, json,ssl

from requests.adapters import HTTPAdapter
from requests.packages.urllib3.poolmanager import PoolManager

parser = argparse.ArgumentParser(description='EPOS Serial->IoT Gateway')

required = parser.add_argument_group('required named arguments')
required.add_argument('-c','--certificate', help='Your PEM certificate', required=True)
parser.add_argument('-u','--url', help='Post URL',
default='https://iot.lisha.ufsc.br/api/put.php')
parser.add_argument('-j','--json', help='Use JSON API', required=True)

args = vars(parser.parse_args())
URL = args['url']
MY_CERTIFICATE = [args['certificate']+'.pem', args['certificate']+'.key']
JSON = args['json']

session = requests.Session()

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 36

session.headers = {'Content-type' : 'application/json'}
session.cert = MY_CERTIFICATE
try:
 response = session.post(URL, json.dumps(JSON))
 print("SEND", str(response.status_code), str(response.text))
except Exception as e:
 print("Exception caught:", e)

6.3. R

6.3.1. Get Script Example
The following python code queries Temperature data at LISHA from an arbitrarily defined time
interval.

library(httr)
library(rjson)
library(xml2)
get_url <- "https://iot.lisha.ufsc.br/api/get.php"
json_body <-
'{
 "series":{
 "version":"1.1",
 "unit":0x84924964,
 "x":741868840,
 "y":679816441,
 "z":25300,
 "r":0,
 "t0":1567021716000000,
 "tf":1567028916000000,
 "dev":0,
 "workflow": 0
 },
 "credentials":{
 "domain":"smartlisha"
 }
}'
res <- httr::POST(get_url, body=json_body, verbose())
res_content = content(res, as = "text")
print(jsonlite::toJSON(res_content))

The following code gets Temperature data at LISHA from the last 5 minutes.

library(httr)
library(rjson)
library(xml2)
get_url <- "https://iot.lisha.ufsc.br/api/get.php"

time <- Sys.time()

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 37

time_0 <-as.numeric(as.integer(as.POSIXct(time))*1000000)

json_body <-
'{
 "series":{
 "version":"1.1",
 "unit":0x84924964,
 "x":741868840,
 "y":679816441,
 "z":25300,
 "r":0,
 "t0":'
json_body <- capture.output(cat(json_body, time_0 - 5*60*1000000))
json_body <- capture.output(cat(json_body, ',"tf":'))
json_body <- capture.output(cat(json_body, time_0))
end_string <- ',
 "dev":0,
 "workflow": 0
 },
 "credentials":{
 "domain":"smartlisha"
 }
}'
json_body <- capture.output(cat(json_body, end_string))

res <- httr::POST(get_url, body=json_body, verbose())

res_content = content(res, as = "text")
print(jsonlite::toJSON(res_content))

IoT Platform Software/Hardware Integration Lab UFSC

https://epos.lisha.ufsc.br/ 15/05/2024 38

7. Troubleshooting
7.1. TLS support for Post-Handshake Authentication
TLS 1.3 has the Post-Handshake Authentication disabled by default. However, the IoT platform
requires PHA to securely connect with clients. This issue can be easily worked around with a custom
SSLContext forcing the use of TLS 1.2, which has PHA enabled by default. An example in Python
follows:

import ssl

ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
connection = HTTPSConnection("iot.lisha.ufsc.br", 443, context=ctx);

Review Log
Ver Date Authors Main Changes

1.0 Feb 15, 2018 Caciano Machado Initial version

1.1 Apr 4, 2018 César Huegel Rest API documentation

1.2 Apr 4, 2020 Leonardo Horstmann Review for EPOS 2.2. and ADEG

1.3 Jun 27, 2020 José Luis Hoffmann, Leonardo
Horstmann, Roberto Scheffel

Review for Insert Changes and ADEG

1.4 Sep 30, 2020 Guto Major revision

1.5 Mar 16, 2022 Roberto Scheffel Series Documentation update

1.6 May 24, 2022 Roberto Scheffel Downsample "aggregator"
documentation added

1.7 December 16, 2022 Mateus Lucena Updated Prolog

	IoT Platform
	[Table of contents]
	Table of contents

	1. Prolog
	2. IoT Platform Overview
	2.1. SmartData
	2.2. SmartData Series
	2.3. Authentication and Authorization
	2.4. Usefull SmartData Units

	3. REST API for Stationary Objects
	3.1. Data Querying
	3.1.1. Data Aggregation
	3.1.2. Fault Injection
	3.1.3. Downsampling

	3.2. Series Creation
	3.2.1. Series Types and Modes
	3.2.2. Series Status
	3.2.3. Meaninful Types and Status

	3.3. Data Insertion
	3.3.1. Bulk Data Insertion
	3.3.2. Series Documentation

	3.4. Series Termination
	3.5. AI Workﬂows
	3.5.1. Persistency
	3.5.2. Loading previous data
	3.5.3. Inserting new data
	3.5.4. Notiﬁcations

	3.6. Data Searching
	3.7. Response codes
	3.8. Plotting a dashboard with Grafana

	4. Binary API for SmartData Version 1.1
	4.1. Create series (Binary)
	4.2. Insert data (Binary)
	4.2.1. Binary Multi SmartData

	4.3. Version format

	5. Client Authentication
	6. Scripts
	6.1. C++
	6.1.1. Get Script Example

	6.2. Python
	6.2.1. Get Script Example
	6.2.2. Put Script Example

	6.3. R
	6.3.1. Get Script Example

	7. Troubleshooting
	7.1. TLS support for Post-Handshake Authentication

	Review Log

