EPOSMote Ill Programming

Table of contents

e EPOSMote Ill Programming
e Creating a .hex image
1. Using JTag
e 1.1. Load an image directly
e 1.2. Load EPOS' USB bootloader
e 1.3. Load EPOS' Network bootloader
e 1.4, Enable EPOSMote lll's ROM Serial bootloader
2. Using EPOS' USB bootloader
3. Using EPOS' Network bootloader
4. Using the ROM Serial bootloader
5. Help!

Creating a .hex image

There are currently four ways you can load an image to a local EPOSMote Ill device. For all of them, you
need a .hex file, which you can create with EPOS' default makefile using the "flash" command, like so:

$ make APPLICATION=<your application> flash
The resulting image shall be img/.hex

Keep in mind that for simple tests, you can use our remotely-accessible EPOSMote Il boards.

1. Using JTag

You only need this method if you have a device that has never been programmed before. In case your
device already has a bootloader loaded, you can skip to the bootloader's respective section.You need JTag
to accomplish one of the following:

e Load an image directly

e Load EPOS' USB bootloader

e Load EPOS' Network bootloader

e Enable EPOSMote IllI's ROM Serial bootloader

You are going to need JLinkExe, which you can download from SEGGER's website. It is convenient to follow
the steps in the .tgz's README to enable user-level access to the JTag device on Linux.

1.1. Load an image directly

To load an image directly with JTag, you can either use JLinkExe manually (1), or use EPOS' default makefile
(2). If you wish to compile an application to load with JTag and run without EPOS' bootloader, you need to
make the following adjustments to the memory map in include/machine/cortex_m/emote3_traits.h
(remember to run make veryclean after):

MEM BASE = 0x20000000;
APP_LOW = 0x20000000;
APP _CODE = 0x00200000;
APP_DATA = 0x20000000;

#Creating_a_.hex_image
https://www.lisha.ufsc.br/article408
https://www.segger.com/jlink-software-beta-version.html

PHY MEM = 0x20000000;
SYS = 0x00200000;
SYS CODE = 0x00200000;
SYS DATA = 0x20000000;

1. With JLinkExe (replace with the name of the image you want to load):
$ JLinkExe

-Link>device = cc2538sf53

-Link>h

-Link>erase

-Link>loadbin <your application>.hex,0

-Link>exit

o o G G o

It is normal to see messages such as "Failed to identify target. Trying again with slow (4 kHz) speed."
If everything was successful, you should see a message like this after the loadbin command:
Downloading file [<your application>.hex]...Info: J-Link: Flash download: Flash
programming performed for 2 ranges (14336 bytes)

Info: J-Link: Flash download: Total time needed: 0.461s (Prepare: 0.091s, Compare:
0.007s, Erase: 0.153s, Program: 0.194s, Verify: 0.003s, Restore: 0.010s)

0.K.

2. If you are compiling a new EPOS image, you can instead upload it to the device directly with EPOS'
default makefile:

$ make APPLICATION=<your application> deploy
J-Link>exit

1.2. Load EPOS' USB bootloader

1. Get the latest version of EPOS' USB bootloader:

$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3 bootloader/img/emote3 usb
_bootloader.hex .

2. Then load it into the device using JLinkExe (see 1.1.1).

1.3. Load EPOS' Network bootloader

1. Get the latest version of EPOS' Network bootloader:

$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3 bootloader/img/emote3 nic
_bootloader.hex .

2. Then load it into the device using JLinkExe (see 1.1.1).

1.4. Enable EPOSMote IlI's ROM Serial bootloader
TODO

2. Using EPOS' USB bootloader

If your device is loaded with EPOS' USB bootloader (as in 1.1.2), you can program your EPOSMote Ill via
USB. You need a copy of EPOS' source and python3 with the pyserial module.

Note: when using EPOSMote Il with USB, the "modemmanager" Linux service might get in the way. It is

recommended to stop this service. In Ubuntu, you can do this with the command:

$ sudo stop modemmanager

You can also disable this service permanently with:
echo "manual" > /etc/init/modemmanager.override

1. Conect your EPOSMote Il with a USB cable and check which device it shows up as. For example:
$ dmesg | tail
[104871.262738] cdc_acm 1-1.1:1.0: ttyACMO: USB ACM device

2. Type in the following command, but do not press Enter:
$ sudo python3 tools/emote3 programmer/emote3 programmer.py -d /dev/ttyACMO -f
img/<your application>.hex

Then reset the mote and issue the command (press Enter).

After these steps, your application should be running. Everytime the mote is reset, the bootloader will run
and wait for a handshake for one second. If none is received and there is an image already loaded, it will
start execution of that image.

Note: if you receive a message from python "ImportError: No module named ‘'serial', you should install the
python pip package. On Ubuntu:

sudo apt-get install python3-pip
sudo apt-get install python3-serial

Note: Kernel linux-image-3.13.0-65-generic 3.13.0-65 breaks Python based Serial communication. You
might need to downgrade your kernel to use the programmer script.

3. Using EPOS' Network bootloader

If your device is loaded with EPOS' Network bootloader (as in 1.1.3), you can program your EPOSMote Il via
radio. You need a copy of EPOS' source, python3 with the pyserial module and a second mote connected to
the PC to act as a programmer.

1. Get the latest version of the code to run on the programmer mote:
$ svn export
https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3 bootloader/img/emote3 nic prog
rammer via jtag.hex .

or: (Warning: the following image is currently unavailable, because programming the NIC
programmer using the USB bootloader is not working correctly)
$ svn export

https://svn.lisha.ufsc.br/openepos/epos2/branches/emote3 bootloader/img/emote3 nic prog
rammer via bootloader.hex .

2. Load it into the programmer mote using an appropriate method as explained above (JTag, USB ...). If
you are programming the programmer mote via JTag, you need the first image. Otherwise, if you are
using the USB bootloader, you need the second one. Warning: programming the NIC programmer
using the USB bootloader is currently not working correctly

3. Reset the programmer mote, connect it to the PC via USB and wait until it blinks its led a few times
and leaves it on (it should take a few seconds).

https://www.mail-archive.com/kernel-packages@lists.launchpad.net/msg137077.html

4. Check which device it shows up as. For example:
$ dmesg | tail
[104871.262738] cdc acm 1-1.1:1.0: ttyACMO: USB ACM device

5. Type in the following command, but do not press Enter:

$ sudo python3 tools/emote3 programmer/emote3 programmer.py -d /dev/ttyACMO -f
img/<your application>.hex

6. Turn on the mote that has the Network bootloader loaded, and issue the command in the previous
step (press Enter). It is normal to see a few "Wrong ACK" messages in this step.

After these steps, your application should be running on the mote that has the Network bootloader loaded.
Every time the mote is reset, the bootloader will run and wait for a handshake for one second. If none is
received and there is an image already loaded, it will start execution of that image.

Note: Kernel linux-image-3.13.0-65-generic 3.13.0-65 breaks Python based Serial communication. You
might need to downgrade your kernel to use the programmer script.

4. Using the ROM Serial bootloader

TODO

5. Help!

If you have any questions or problems with this process, please contact me: davir@lisha.ufsc.br

https://www.mail-archive.com/kernel-packages@lists.launchpad.net/msg137077.html
mailto:davir@lisha.ufsc.br

	EPOSMote III Programming
	[Table of contents]
	Table of contents

	Creating a .hex image
	1. Using JTag
	2. Using EPOS' USB bootloader
	3. Using EPOS' Network bootloader
	4. Using the ROM Serial bootloader
	5. Help!

