

Application-driven Embedded System Design

Prof. Antônio Augusto Fröhlich UFSC/LISHA guto@lisha.ufsc.br http://epos.lisha.ufsc.br/

Jul 2, 2010

Overview

- Embedded System
- Embedded System-on-a-Chip
- Established Embedded System Design Methods
- Application-driven Embedded System Design
- EPOS
- Final remarks
- Case studies and tales

Embedded Systems: embedded!

[Foldoc]

"Hardware and software which forms a component of some larger system and which is expected to function without human intervention."

Really Embedded!

Where are the processors?

(Tennenhouse, CACM 43(5):44)

Embedded X All-purpose

Embedded

- Dedicated
- Single, previously known application
- Small set of application-specific services and features
- Integrated hardware and software design
- Example
 EPOS SoC

All-purpose

- Generic
- Any, many applications
- Comprehensive set of services and features
- Independently designed computer, operating system, and middleware
- Examples
 - PC + LINUX + JRE
 - IPhone + MacOS + ???

Extreme Integration

- Advances in microelectronics are enabling developers to integrate complex hardware designs in a single silicon pastille
- Embedded System-On-a-Chip

Embedded System Design

Component Evolution

Contemporary Design Approaches

Model-driven Engineering

"A promising approach to address the inability of thirdgeneration languages to alleviate the complexity of platforms and express domain concepts effectively." [Scmidt 2006]

Platform-based design "In essence, a platform is a frozen architecture. Once the architecture is frozen, you may standardize the interfaces and give the engineers some choice of building blocks."

[Smith 2004]

Jul 2010

From PIM to PSM

http://www.lisha.ufsc.br

From PSM to SoC

The Magic Behind MDE + PBD

Contemporary Design Flow

Contemporary Development Tools

- Hardware
 - Focus on IP reuse and glue-logic generation
 - Run-time support is mostly considered part of application's duties
 - Examples
 - SOPC Builder from ALTERA
 - CORAL from IBM
 - EDK from XILINX

- Software
 - Focus on models, refactoring, and transformations based on middleware
 - Hardware and OS have existed since the creation of the world
 - Examples
 - UML and MDE tools
 - JAVA and PHP RTSS
 - Builders

A few words abut the OS...

- The more complex the application is, the greater is the probability it will need some sort of runtime support system
 - Core OS services (scheduling, memory management, communication, etc)
 - Peripherals abstraction (sensors, actuators, etc)
 - Power management
 - Dynamically reconfiguration
 - ...

Ordinary operating systems cannot go with the dynamism of SoCs

and about Hardware Soft IPs

- HDLs such as VHDL, Verilog, and System C are closer to software programming language than to older hardware development strategies
- There might soon be no reason to treat them differently from software components
- Both domains can to learn from each other
 - Software can improve on handling parallelism, coordination, and timing
 - Hardware can improve on factorization, composition, and separation of concerns
- Embedded system developers could thus concentrate on what really matters: applications

The Embedded System Challenge

- We must give each embedded application an adequate execution platform ...
 - that properly fulfills its requirements (no workarounds, no middleware, etc)
 - that is delivered as required (application-specific API)
 - it doesn't matter what is HW and what is SW
- without having to design a new system for each application ...
- and without requiring application developers to undergo complicated configuration procedures

A Plausible Solution

Apply domain engineering techniques

- Family-based design
- Object-oriented design
- Feature-based modeling
- Application-oriented design

- Aspect-oriented programming
- Generic programming
- Static metaprogramming
- Generative programming

to produce embedded system components (SW / HW / hybrid) that can be (automatically) tailored according with the needs of specific applications

- A new methodology emerged
 - Application-driven Embedded System Design

Application-oriented Domain Decomposition

Application-oriented Domain Decomposition

LISHA

- Abstractions model domain entities
- Commonality analysis
 - Build families of abstractions
- Variability analysis
 - Shape family members (subclassing or not)
 - Isolate scenario aspects
- Factorization
 - Configurable features
- Inter-family relationships
 - System-wide properties
 - Reusable architectures

Scenario-Independent Abstractions

- Can be reused in a variety of scenarios
- Yield components
 - Application-ready ADTs
 - Correspondence with domain entities
- Families
 - Class hierarchy
 - Cooperating classes
 - Common packages
 - Base class or utility classes
 - Configurable features

Jul 2010

Inter-Family Relationships

- Shape framework composition rules
- Well captured with feature-based models
- Avoid
 - Restrictive rules
 - Loose rules
 - Relations for the sake of reuse
 - Factorization

Client

Scenario Aspects

- Properties that transcend the scope of single abstractions
 - Scenario dependencies
 - Non-functional properties
- Can be organized as families too
- Applied to abstractions by
 - Weavers
 - Scenario adapters

Configurable Features

- Configurable features differ from aspects in that
 - They are specific to a single family of abstractions (do not crosscut families)
 - They are not transparent to abstractions
 - but encapsulate generic programming implementations of algorithms and data structures associated to the feature that can be reused by abstractions when the feature is turned on

Inflated Interfaces

- Export families of abstractions to applications as if they were a single abstraction
 - Well-known to application programmers
 - Comprehensive
 - Promote requirement analysis
- Support automatic generation
 - Interface references can be extracted from specifications and trigger the search for adequate components
- Rely on feature models

Partial and Selective Realization

Component Frameworks

- Also known as "black-box frameworks"
 - Based on the idea of components and defined interfaces (in opposition to inheritance and overriding used in white-box frameworks)
 - The reuse of a component does not imply on reusing the whole framework along with it
- Defined as compositions of scenario adapters (placeholders for components) and a configuration knowledge base that specifies components' requirements and dependencies

Application-oriented Embedded System

The EPOS System

- Embedded Parallel Operating System
 - A collection of SW/HW components
 - A meta-programmed framework
 - A set of tools to assist the selection, configuration and adaptation of components
- 10 years old
- 50 man/year work (10 % committed)
- Mostly academic
 - CS courses on OS and Embedded Systems
- But also industrial
 - Telecom
 - Multimedia

EPOS Tool Chain

components, mediators and IPs

... sustaining Real Design Space Exploration ...

... for the sake of Applications ...

... with power efficiency

Data Rate

Hardware Abstraction Layers

Hardware Mediators

Sustain an interface contract between system abstractions and the machine

Mostly metaprogrammed

EPOS Sample Instance

- Single task
- Multiple threading
- Cooperative scheduling (co-routines)
- Dynamic memory allocation

Arch.	.text(bytes)	.data(bytes)	. bss (bytes)	total(bytes)
IA- 32	926	4	64	994
H8	644	2	22	668
PPC32	1,692	4	56	1,752

EPOS X eCos: footprint

• eCos - Embedded Cygnus Operating System

- Customizable run-time support system by RedHat
- Manual configuration
- HAL-based
- Evaluated instance of eCos
 - Same configuration as EPOS

System	Portability Strategy	Size (bytes)
EPOS	Hardware Mediators	994
eCos	HAL	35,85

EPOS X eCos: performance

IA-32-based platform

• Time taken for a consecutive number of contextswitching operations and memory allocations

System	Benchmark	Time taken (μs)
EPOS	context- switching	1,502
eCos	context- switching	2,915
EPOS	memory allocation	762
eCos	memory allocation	3,180

EPOS Framework Metaprogram

Power Management in EPOS

- Application-driven
- Hierarchical
 - At high-level abstractions, propagated to mediators
 - Formalized with Petry Nets
- Semantic modes
 - OFF
 - SUSPEND (hibernation and reconfiguration)
 - STAND BY (short-time resume)
 - LIGHT (fully functional, low power)
 - FULL (performance)
- Autonomous manager integrated within the realtime scheduler

PM Event Propagation

Software Update in EPOS

Dynamic Reconfiguration in EPOS

PM + SW Update + mediators

Final Remarks

ADESD

- Complements traditional ES methodologies with a domain engineering strategy
- Extends the notion of platform to multiple architectures (hardware mediators)

EPOS SoCs

- Automatically generated by tools according with application requirements
 - Properly designed IPs
 - Hardware mediators for the target machine
- Limited by current HDL (aspects, metaprograms, etc)